Patients who recover from SARS-CoV-2 infections produce antibodies and antigen-specific T cells against multiple viral proteins. Here, an unbiased interrogation of the anti-viral memory B cell repertoire of convalescent patients has been performed by generating large, stable hybridoma libraries and screening thousands of monoclonal antibodies to identify specific, high-affinity immunoglobulins (Igs) directed at distinct viral components. As expected, a significant number of antibodies were directed at the Spike (S) protein, a majority of which recognized the full-length protein. These full-length Spike specific antibodies included a group of somatically hypermutated IgMs. Further, all but one of the six COVID-19 convalescent patients produced class-switched antibodies to a soluble form of the receptor-binding domain (RBD) of S protein. Functional properties of anti-Spike antibodies were confirmed in a pseudovirus neutralization assay. Importantly, more than half of all of the antibodies generated were directed at non-S viral proteins, including structural nucleocapsid (N) and membrane (M) proteins, as well as auxiliary open reading frame-encoded (ORF) proteins. The antibodies were generally characterized as having variable levels of somatic hypermutations (SHM) in all Ig classes and sub-types, and a diversity of V and V gene usage. These findings demonstrated that an unbiased, function-based approach towards interrogating the COVID-19 patient memory B cell response may have distinct advantages relative to genomics-based approaches when identifying highly effective anti-viral antibodies directed at SARS-CoV-2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8064894 | PMC |
http://dx.doi.org/10.1016/j.jvacx.2021.100098 | DOI Listing |
Expert Opin Biol Ther
January 2025
OU Stephenson Cancer Center, Oklahoma City.
Introduction: Antibody-drug conjugates (ADCs) are a rapidly evolving class of anti-cancer drugs with a significant impact on management of hematological malignancies including diffuse large B-cell lymphoma (DLBCL). ADCs combine a cytotoxic drug (a.k.
View Article and Find Full Text PDFCurr Cardiol Rep
January 2025
Division of Internal Medicine, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, University of Milan, Piazzale Principessa Clotilde, 3, Milan, 20121, Italy.
Purpose Of Review: To outline the latest discoveries regarding the utility and reliability of serum biomarkers in idiopathic recurrent acute pericarditis (IRAP), considering recent findings on its pathogenesis. The study highlights the predictive role of these biomarkers in potential short- (cardiac tamponade, recurrences) and long-term complications (constrictive pericarditis, death).
Recent Findings: The pathogenesis of pericarditis has been better defined in recent years, focusing on the autoinflammatory pathway.
Curr Microbiol
January 2025
Razi Vaccine and Serum Research Institute (RVSRI), Agricultural Research, Education and Organization (AREEO), Karaj, Iran.
Brucella spp. is the bacterium responsible for brucellosis, a zoonotic infection that affects humans. This disease poses significant health challenges and contributes to poverty, particularly in developing countries.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.
Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.
View Article and Find Full Text PDFJ Infect Dis
January 2025
College of Mathematical Sciences, College of Science, Rochester Institute of Technology, Rochester, NY.
Introduction: We sought to explore the variability of antibody responses to multiple vaccines during early life in individual children, assess the trajectory of each child longitudinally, determine the associations of demographic variables and antibiotic exposures with vaccine-induced immunity, and link vaccine responsiveness to infection proneness.
Methods: In 357 prospectively-recruited children, age six through 36 months, antibody levels to 13 routine vaccine antigens were measured in sera at multiple time points and normalized to their respective protective thresholds to categorize children into four groups: very low, low, normal, and high vaccine responder. Demographic variables and frequency of antibiotic exposure data were collected.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!