A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Classifying signals from a wearable accelerometer device to measure respiratory rate. | LitMetric

Background: Automatic measurement of respiratory rate in general hospital patients is difficult. Patient movement degrades the signal and variation of the breathing cycle means that accurate observation for ≥60 s is needed for adequate precision.

Methods: We studied acutely ill patients recently admitted to a teaching hospital. Breath duration was measured from a triaxial accelerometer attached to the chest wall and compared with a signal from a nasal cannula. We randomly divided the patient records into a training (n=54) and a test set (n=7). We used machine learning to train a neural network to select reliable signals, automatically identifying signal features associated with accurate measurement of respiratory rate. We used the test records to assess the accuracy of the device, indicated by the median absolute difference between respiratory rates, provided by the accelerometer and by the nasal cannula.

Results: In the test set of patients, machine classification of the respiratory signal reduced the median absolute difference (interquartile range) from 1.25 (0.56-2.18) to 0.48 (0.30-0.78) breaths per min. 50% of the recording periods were rejected as unreliable and in one patient, only 10% of the signal time was classified as reliable. However, even only 10% of observation time would allow accurate measurement for 6 min in an hour of recording, giving greater reliability than nurse charting, which is based on much less observation time.

Conclusion: Signals from a body-mounted accelerometer yield accurate measures of respiratory rate, which could improve automatic illness scoring in adult hospital patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8071973PMC
http://dx.doi.org/10.1183/23120541.00681-2020DOI Listing

Publication Analysis

Top Keywords

respiratory rate
16
measurement respiratory
8
hospital patients
8
test set
8
accurate measurement
8
median absolute
8
absolute difference
8
respiratory
6
signal
5
classifying signals
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!