With the discovery of secreted RNAs, it has become apparent that the biological role of regulatory oligonucleotides likely goes beyond the borders of individual cells. However, the mechanisms of their action are still comprehended only in general terms and mainly for eukaryotic microRNAs, which can interfere with mRNAs even in distant recipient cells. It has recently become clear that bacterial cells lacking interference systems can also respond to eukaryotic microRNAs that have targets in their genomes. However, the question of whether bacteria can perceive information transmitted by oligonucleotides secreted by other prokaryotes remained open. Here we evaluated the fraction of short RNAs secreted by during individual and mixed growth with , and found that in the presence of other bacteria tends to excrete oligonucleotides homologous to alien genomes. Based on this observation, we selected four RNAs secreted by either or , together with one -specific oligonucleotide. Both fragments of 23S-RNA suppressed the growth of . Of the two fragments secreted by , one abolished the stimulatory effect of RNA derived from the 3'-UTR of ProA mRNA, while the other inhibited bacterial growth only in the double-stranded state with complementary RNA. The ability of two RNAs secreted by cohabiting bacteria to enter cells was demonstrated using confocal microscopy. Since selected -specific RNA also affected the growth of this bacterium, we conclude that bacterial RNAs can participate in inter- and intraspecies signaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8082180 | PMC |
http://dx.doi.org/10.3389/fmolb.2021.609979 | DOI Listing |
Background: Alzheimer's disease (AD) is the most common cause of dementia worldwide. It is characterized by dysfunction in the U1 small nuclear ribonucleoproteins (snRNPs) complex, which may precede TAU aggregation, enhancing premature polyadenylation, spliceosome dysfunction, and causing cell cycle reentry and death. Thus, we evaluated the effects of a synthetic single-stranded cDNA, called APT20TTMG, in induced pluripotent stem cells (iPSC) derived neurons from healthy and AD donors and in the Senescence Accelerated Mouse-Prone 8 (SAMP8) model.
View Article and Find Full Text PDFBackground: TAR-DNA-binding protein 43 (TDP43), is a pathologic marker in neurodegenerative diseases including frontotemporal lobar degeneration and amyotrophic lateral sclerosis. The aggregation of TDP-43, a crucial RNA-binding protein, is a consequence of post-translational modifications (PTMs) that disrupt its normal function. PTMs such as phosphorylation and ubiquitination contribute to the aberrant accumulation of TDP-43 aggregates, leading to neurodegenerative disorders like amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD).
View Article and Find Full Text PDFCurr Protoc
January 2025
Czech Metrology Institute, Brno, Czech Republic.
Atomic force microscopy (AFM) has recently received increasing interest in molecular biology. This technique allows quick and reliable detection of biomolecules. However, studying RNA-protein complexes using AFM poses significant challenges.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Otolaryngology-Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
Meniere's disease (MD) is an inner ear disease characterized by endolymphatic hydrops (EH). Maintaining a regular daily routine is crucial for MD patients. However, the relationship between circadian rhythms and MD remains unclear.
View Article and Find Full Text PDFBiofactors
January 2025
Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai, People's Republic of China.
Breast cancer continues to be a major health issue for women worldwide, with vimentin (VIM) identified as a crucial factor in its progression due to its role in cell migration and the epithelial-to-mesenchymal transition (EMT). This study focuses on elucidating VIM's regulatory mechanisms on the miR-615-3p/PICK1 axis. Utilizing the 4T1 breast cancer cell model, we first used RNA-seq and proteomics to investigate the changes in the APA of PICK1 following VIM knockout (KO).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!