A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dual-energy CT quantitative parameters for the differentiation of benign from malignant lesions and the prediction of histopathological and molecular subtypes in breast cancer. | LitMetric

Background: Dual-energy computed tomography (DECT) is widely used to characterize and differentiate tumors. However, data regarding its diagnostic performance for the characterization of breast tumors are limited. In this study, we assessed the diagnostic performance of quantitative parameters derived from DECT in differentiating benign from malignant lesions and predicting histopathological and molecular subtypes in patients with breast cancer.

Methods: Dual-phase contrast-enhanced DECT of the thorax was performed on participants with breast tumors. Conventional CT attenuation and DECT quantitative parameters, including normalized iodine concentration (NIC), the slope of the spectral Hounsfield unit curve (λ), and normalized effective atomic number (nZ), were obtained and compared between benign and malignant lesions, invasive non-special carcinoma, and ductal carcinoma in situ (DCIS), and among the four molecular subtypes of breast cancer. The diagnostic performance of the quantitative parameters was analyzed using receiver operating characteristic (ROC) curves.

Results: This study included 130 participants with 161 breast lesions (44 benign and 117 malignant). In the arterial and venous phase, NICs, λ, nZ, and attenuation were higher in malignant lesions than benign lesions (all P<0.001). The venous phase λ had the best differential diagnostic capability, with an area under the curve (AUC) of 0.90, a sensitivity of 84.1% (37 of 44), a specificity of 86.3% (101 of 117), and an accuracy of 85.7% (138 of 161). The NICs in the arterial and venous phases were higher in invasive non-special carcinoma than DCIS (both P<0.001). In terms of diagnostic performance, NIC in the venous phase had an AUC of 0.77, a sensitivity of 75.0% (12 of 16), a specificity of 81.2% (82 of 101), and an accuracy of 80.3% (94 of 117). The luminal A subtype produced a lower venous phase NIC, and arterial and venous phase nZ than the non-luminal A subtype (AUC of 0.91 for the combination of these three parameters).

Conclusions: Dual-energy CT quantitative parameters are a feasible and valuable noninvasive means of differentiating between benign and malignant lesions, and predicting histopathological and molecular subtypes in patients with breast cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8047348PMC
http://dx.doi.org/10.21037/qims-20-825DOI Listing

Publication Analysis

Top Keywords

quantitative parameters
16
malignant lesions
16
benign malignant
12
molecular subtypes
12
diagnostic performance
12
histopathological molecular
8
subtypes breast
8
breast cancer
8
breast tumors
8
performance quantitative
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!