Background: To develop and verify a prediction model for distinguishing malignant from benign ground-glass nodules (GGNs) combined with clinical characteristics and F-fluorodeoxyglucose (FDG) positron emission tomography-computed tomography (PET/CT) parameters.

Methods: We retrospectively analyzed 170 patients (56 males and 114 females) with GGNs who underwent PET/CT and high-resolution CT examination in our hospital from November 2011 to December 2019. The clinical and imaging data of all patients were collected, and the nodules were randomly divided into a derivation set and a validation set. For the derivation set, we used multivariate logistic regression to develop a prediction model for distinguishing benign from malignant GGNs. A receiver operating characteristic (ROC) curve was used to evaluate the diagnostic efficacy of the model, and the data in the validation set were used to verify the prediction model.

Results: Among the 170 patients, 197 GGNs were confirmed via postoperative pathological examination or clinical follow-up. There were 21 patients with 27 GGNs in the benign group and 149 patients with 170 GGNs in the adenocarcinoma group. A total of five parameters, including the patient's sex, nodule location, margin, pleural indentation, and standardized uptake value (SUV) index (the ratio of nodule SUVmax to liver SUVmean), were selected to develop a prediction model for distinguishing benign from malignant GGNs. The area under the curve (AUC) of the model was 0.875 in the derivation set, with a sensitivity of 0.702 and a specificity of 0.923. The positive likelihood ratio was 9.131, and the negative likelihood ratio was 0.322. In the validation set, the AUC of the model was 0.874, which was not significantly different from the derivation set (P=0.989).

Conclusions: This study developed and validated a prediction model based on F-FDG PET/CT imaging and clinical characteristics for distinguishing malignant from benign GGNs. The model showed good diagnostic efficacy and high specificity, which can improve the preoperative diagnosis of high-risk GGNs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8047343PMC
http://dx.doi.org/10.21037/qims-20-840DOI Listing

Publication Analysis

Top Keywords

prediction model
20
derivation set
16
clinical characteristics
12
distinguishing malignant
12
malignant benign
12
model distinguishing
12
validation set
12
model
9
ggns
9
model based
8

Similar Publications

Objective: This study investigates the relationship between the albumin-to-creatinine ratio and diabetic retinopathy (DR) in US adults using NHANES data from 2009 to 2016. This study assesses the predictive efficacy of the urinary serum albumin-to-creatinine ratio (UACR/SACR Ratio) against traditional biomarkers such as the serum albumin-to-creatinine ratio (SACR) and urinary albumin-to-creatinine ratio (UACR) for evaluating DR risk. Additionally, the study explores the potential of these biomarkers, both individually and in combination with HbA1c, for early detection and risk stratification of DR.

View Article and Find Full Text PDF

Circadian Misalignment Impacts Cardiac Autonomic Modulation in Adolescence.

Sleep

January 2025

Sleep Research & Treatment Center, Department of Psychiatry & Behavioral Health, Penn State University, College of Medicine, Hershey PA, USA.

Study Objectives: Although heart rate variability (HRV), a marker of cardiac autonomic modulation (CAM), is known to predict cardiovascular morbidity, the circadian timing of sleep (CTS) is also involved in autonomic modulation. We examined whether circadian misalignment is associated with blunted HRV in adolescents as a function of entrainment to school or on-breaks.

Methods: We evaluated 360 subjects from the Penn State Child Cohort (median 16y) who had at least 3-night at-home actigraphy (ACT), in-lab 9-h polysomnography (PSG) and 24-h Holter-monitoring heart rate variability (HRV) data.

View Article and Find Full Text PDF

Liver cancer poses a global health challenge with limited therapeutic options. Notably, the limited success of current therapies in patients with primary liver cancers (PLCs) may be attributed to the high heterogeneity of both hepatocellular carcinoma (HCCs) and intrahepatic cholangiocarcinoma (iCCAs). This heterogeneity evolves over time as tumor-initiating stem cells, or cancer stem cells (CSCs), undergo (epi)genetic alterations or encounter microenvironmental changes within the tumor microenvironment.

View Article and Find Full Text PDF

A prediction model for electrical strength of gaseous medium based on molecular reactivity descriptors and machine learning method.

J Mol Model

January 2025

Hubei Key Laboratory·for High-Efficiency-Utilization of Solar Energy and Operation, Control of Energy-Storage System, Hubei-University of Technology, Wuhan, 430068, China.

Context: Ionization and adsorption in gas discharge are similar to electrophilic and nucleophilic reactions. The molecular descriptors characterizing reactions such as electrostatic potential descriptors are useful in predicting the electrical strength of environmentally friendly gases. In this study, descriptors of 73 molecules are employed for correlation analysis with electrical strength.

View Article and Find Full Text PDF

Objectives: To investigate the clinical and laboratory features of Sjögren's syndrome-associated autoimmune liver disease (SS-ALD) patients and identify potential risk and prognostic factors.

Methods: SS patients with or without ALD, who visited Tongji Hospital between the years 2011 and 2021 and met the 2012 American College of Rheumatology (ACR) classification criteria for Sjögren's syndrome, were retrospectively enrolled. The clinical and laboratory data of the enrolled patients, including autoimmune antibodies, were collected and analyzed with principal component analysis, correlation analysis, LASSO regression, and Cox regression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!