Aurantio-obtusin (AO) is a major anthraquinone compound isolated from or , which possesses diverse pharmacological effects. Previous studies have shown that it has a good effect on lowering blood lipids and treating various diseases. A few studies have also reported about its metabolites. A rapid and reliable method using ultra-high-performance liquid chromatography-Q-Exactive Orbitrap mass spectrometry and multiple data-processing technologies was established to investigate the metabolites of AO in the plasma and various tissues of rats, including the heart, liver, spleen, lung, kidneys, and brain. Finally, a total of 36 metabolites were identified in the plasma of rats, which could be very beneficial for understanding the effective form of AO metabolites leading to new drug discovery. The result demonstrated that this strategy, especially parallel reaction monitoring, has shown a wide range of applications in the identification of metabolites.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8062173 | PMC |
http://dx.doi.org/10.1155/2021/6630604 | DOI Listing |
Int J Mol Sci
January 2025
Key Laboratory of Biology and Genetics Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.
Rapeseed ( L.) is an important crop for healthy edible oil and stockfeed worldwide. However, its growth and yield are severely hampered by black rot, a destructive disease caused by pv.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
Soybean has outstanding nutritional and medicinal value because of its abundant protein, oil, and flavonoid contents. This crop has rich seed coat colors, such as yellow, green, black, brown, and red, as well as bicolor variants. However, there are limited reports on the synthesis of flavonoids in the soybean seed coats of different colors.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Animal Husbandry, Pasture and Green Agriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China.
is a destructive pathogen responsible for sunflower sclerotinia rot, resulting in substantial yield and economic losses worldwide. species have demonstrated the capacity to inhibit plant pathogen growth through the production of secondary metabolites. However, there are fewer recent studies focusing on the application of metabolites in inhibiting growth and development and controlling sunflower sclerotinia rot disease.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Horticulture, Pomology Institute, Shanxi Agricultural University, Jinzhong 030800, China.
Amino acids in wine grapes function as precursors for various secondary metabolites and play a vital role in plant growth, development, and stress resistance. The amino acid/auxin permease () genes encode a large family of transporters; however, the identification and function of the gene family in grapes remain limited. Consequently, we conducted a comprehensive bioinformatics analysis of all genes in grapes, encompassing genome sequence analysis, conserved protein domain identification, chromosomal localization, phylogenetic relationship analysis, and gene expression profiling.
View Article and Find Full Text PDFPlants (Basel)
December 2024
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
Long-term use of the global non-selective herbicide glyphosate for weed control has caused resistance in weeds. Overproducing of the target of glyphosate 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) is one of the resistance mechanisms in weeds. However, few studies have measured the effects on tolerance levels and metabolite content in model plant species overexpressing from weeds.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!