To date, the COVID-19 pandemic has claimed over 1 million human lives, infected another 50 million individuals and wreaked havoc on the global economy. The crisis has spurred the ongoing development of drugs targeting its etiological agent, the SARS-CoV-2. Targeting relevant protein-protein interaction interfaces (PPIIs) is a viable paradigm for the design of antiviral drugs and enriches the targetable chemical space by providing alternative targets for drug discovery. In this review, we will provide a comprehensive overview of the theory, methods and applications of PPII-targeted drug development towards COVID-19 based on recent literature. We will also highlight novel developments, such as the successful use of non-native protein-protein interactions as targets for antiviral drug screening. We hope that this review may serve as an entry point for those interested in applying PPIIs towards COVID-19 drug discovery and speed up drug development against the pandemic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8064971PMC
http://dx.doi.org/10.1016/j.csbj.2021.04.003DOI Listing

Publication Analysis

Top Keywords

drug discovery
12
protein-protein interaction
8
interaction interfaces
8
covid-19 drug
8
drug development
8
drug
6
targeting protein-protein
4
covid-19
4
interfaces covid-19
4
discovery covid-19
4

Similar Publications

Exploring the druggability of the UEV domain of human TSG101 in search for broad-spectrum antivirals.

Protein Sci

January 2025

Department of Physical Chemistry, Institute of Biotechnology, and Unit of Excellence in Chemistry Applied to Biomedicine and Environment, School of Sciences, University of Granada, Granada, Spain.

The ubiquitin E2 variant domain of TSG101 (TSG101-UEV) plays a pivotal role in protein sorting and virus budding by recognizing PTAP motifs within ubiquitinated proteins. Disruption of TSG101-UEV/PTAP interactions has emerged as a promising strategy for the development of host-oriented broad-spectrum antivirals with low susceptibility to resistance. TSG101 is a challenging target characterized by an extended and flat binding interface, low affinity for PTAP ligands, and complex binding energetics.

View Article and Find Full Text PDF

ConoDL: a deep learning framework for rapid generation and prediction of conotoxins.

J Comput Aided Mol Des

December 2024

Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.

Conotoxins, being small disulfide-rich and bioactive peptides, manifest notable pharmacological potential and find extensive applications. However, the exploration of conotoxins' vast molecular space using traditional methods is severely limited, necessitating the urgent need of developing novel approaches. Recently, deep learning (DL)-based methods have advanced to the molecular generation of proteins and peptides.

View Article and Find Full Text PDF

Klebsiella pneumoniae is a leading cause of anti-microbial resistance in healthcare-associated infections that have posed a severe threat to neonatal and wider community. The escalating crises of antibiotic resistance have compelled researchers to explore an innovative arsenal beginning from natural resources to chemical modifications in order to overcome the ever-increasing resistance issues. The present review highlights the drug discovery efforts with a special focus on cutting-edge strategies in the hunt for potential drug candidates against MDR/XDR Klebsiella pneumoniae.

View Article and Find Full Text PDF

Surgery using skin flaps is essential for soft tissue reconstruction. However, postoperative ischemic injury of the skin flap is a major complication and a top concern after the surgery. Currently, evidence-based drugs to fully prevent ischemic injury are not available.

View Article and Find Full Text PDF

Nanotoxicology: developments and new insights.

Nanomedicine (Lond)

December 2024

Nanotheranostics Drug Discovery Research Group, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Nigeria.

The use of nanoparticles (NPs) in treatment of diseases have increased exponentially recently, giving rise to the science of nanomedicine. The safety of these NPs in humans has also led to the science of nanotoxicology. Due to a dearth of both readily available models and precise bio-dispersion characterization techniques, nanotoxicological research has obviously been constrained.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!