(Korth.) Havil. or locally known as ketum/daun sebiak/biak-biak belongs to Rubiaceae family and generally occurs in secondary forest or disturbed areas in tropical and subtropical region. This research enumerated the characterisation of leaf anatomy and micromorphology features which is still not well documented. This medium to large sized tree species characterised with opposite arrangement, ovate-acuminate leaf and with 12-17 pairs of veins. Transverse sections of petioles showed that this species has petiole outlines with slightly convex at the middle of the adaxial part and 'U'-shaped on abaxial side. Results also showed that this species has paracytic and hypostomatic stomata, combination of non-glandular (majority) and glandular trichomes (minority), with observation on the secretory cells present in petiole and midrib parenchyma cells. Cuticle on the abaxial and adaxial epidermal surfaces showed the presence granule and wax films with periclinal and anticlinal walls can be differentiated clearly. The results obtained in this study can be used to providing additional systematics information of with the documentation of the leaf anatomy and micromorphology characters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8054664PMC
http://dx.doi.org/10.21315/tlsr2021.32.1.7DOI Listing

Publication Analysis

Top Keywords

leaf anatomy
12
anatomy micromorphology
12
leaf
4
micromorphology characteristics
4
characteristics ketum
4
ketum korth
4
korth havil]
4
havil] rubiaceae
4
rubiaceae korth
4
korth havil
4

Similar Publications

Background: Colon cancer is the third most common cancer type worldwide. Novel alternative therapeutic anti-cancer drugs against colon cancer with less toxicity are to be explored . This study was aimed to explore the anti-proliferative and anti-migratory activity of various fractions of ethanolic leaf extract on human colon cancer cell lines (HCT-116) and to explore the potential molecular targets from the most potent plant extract fraction.

View Article and Find Full Text PDF

Background: Innovation in crop establishment is crucial for wheat productivity in drought-prone climates. Seedling establishment, the first stage of crop productivity, relies heavily on root and coleoptile system architecture for effective soil water and nutrient acquisition, particularly in regions practicing deep planting. Root phenotyping methods that quickly determine coleoptile lengths are vital for breeding studies.

View Article and Find Full Text PDF

Leaf and Root Functional Traits of Woody and Herbaceous Halophytes and Their Adaptations in the Yellow River Delta.

Plants (Basel)

January 2025

State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271000, China.

Leaves and roots perform assimilation, supporting plant growth and functionality. The variations in their functional traits reflect adaptive responses to environmental conditions, yet limited information is available regarding these trait variations and their coordination in saline environments. In this study, 18 common woody and herbaceous halophyte species from the Yellow River Delta were collected, and their leaf and root functional traits were assessed and compared.

View Article and Find Full Text PDF

Segment Any Leaf 3D: A Zero-Shot 3D Leaf Instance Segmentation Method Based on Multi-View Images.

Sensors (Basel)

January 2025

School of Electronic and Communication Engineering, Sun Yat-sen University, Shenzhen 518000, China.

Exploring the relationships between plant phenotypes and genetic information requires advanced phenotypic analysis techniques for precise characterization. However, the diversity and variability of plant morphology challenge existing methods, which often fail to generalize across species and require extensive annotated data, especially for 3D datasets. This paper proposes a zero-shot 3D leaf instance segmentation method using RGB sensors.

View Article and Find Full Text PDF

This study investigates the anatomical adaptations of leaves from two halophyte species, (Forsskal) Asch. and L., in response to pollutants from a cement factory and human activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!