Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Phenotyping algorithms are essential tools for conducting clinical research on observational data. Manually devel- oped phenotyping algorithms, such as those curated within the eMERGE (electronic Medical Records and Genomics) Network, represent the gold standard but are time consuming to create. In this work, we propose a framework for learning from the structure of eMERGE phenotype concept sets to assist construction of novel phenotype definitions. We use eMERGE phenotypes as a source of reference concept sets and engineer rich features characterizing the con- cept pairs within each set. We treat these pairwise relationships as edges in a concept graph, train models to perform edge prediction, and identify candidate phenotype concept sets as highly connected subgraphs. Candidate concept sets may then be interrogated and composed to construct novel phenotype definitions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8075469 | PMC |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!