Radiology reports have been widely used for extraction of various clinically significant information about patients' imaging studies. However, limited research has focused on standardizing the entities to a common radiology-specific vocabulary. Further, no study to date has attempted to leverage RadLex for standardization. In this paper, we aim to normalize a diverse set of radiological entities to RadLex terms. We manually construct a normalization corpus by annotating entities from three types of reports. This contains 1706 entity mentions. We propose two deep learning-based NLP methods based on a pre-trained language model (BERT) for automatic normalization. First, we employ BM25 to retrieve candidate concepts for the BERT-based models (re-ranker and span detector) to predict the normalized concept. The results are promising, with the best accuracy (78.44%) obtained by the span detector. Additionally, we discuss the challenges involved in corpus construction and propose new RadLex terms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8075450PMC

Publication Analysis

Top Keywords

radiology reports
8
radlex terms
8
span detector
8
radlex
4
radlex normalization
4
normalization radiology
4
reports radiology
4
reports extraction
4
extraction clinically
4
clinically patients'
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!