Although etiologically heterogeneous at least 50% of all early on-set hearing losses have a genetic cause and of these, the large majority, 75-80% are most probably autosomal recessive and 70% are non-syndromic. The rest of the congenital hearing losses are determined by clinical and environmental factors such as ototoxic medication, prematurity, and complications at birth. During the last decade it became clear that 50-80% of all such afflictions result from mutations in a single gene, , which encodes the protein Connexin 26. In order to, at least partially clarify this problem, especially in an emerging country such as Romania, where the problem is not studied adequately, we developed a comprehensive study of genetic, clinical and environmental risk factors for congenital hearing loss. The two most common variations of this gene, and in children with positive diagnosis of bilateral severe to profound sensorineural hearing loss were investigated. A cohort of 34 children (20 female and 14 male), ages between 2 and 10 (mean age 4.62 years), coming from 33 non-related families were evaluated. All cases were diagnosed with severe or profound bilateral congenital SNHL. A statistical comparison of genetic and environmental/clinical prevalence was also attempted since the presence of a genetic disorder cannot rule out the role of other documented risk factors in the etiology of SNHL. The results showed that, 29.4% of cases (10/34) were homozygotic for the mutation ), also known as genotype Δ/Δ. 5.88% of cases (2/34) belong to the heterozygotic bi-genic group . The clinical factors with high statistical significance for SNHL in a non-genetic group have no significance for genetic SNHL patients. Thus, the present study confirms the relatively high prevalence of the and mutations in cases of congenital non-syndromic severe of profound bilateral SNHL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8082587PMC
http://dx.doi.org/10.3892/etm.2021.10044DOI Listing

Publication Analysis

Top Keywords

clinical environmental
12
risk factors
12
hearing loss
12
severe profound
12
environmental risk
8
factors etiology
8
sensorineural hearing
8
hearing losses
8
congenital hearing
8
profound bilateral
8

Similar Publications

Psychological distress, including anxiety or mood disorders, emanates from the onset of chronic/unpredictable stressful events. Symptoms in the form of maladaptive behaviors are learned and difficult to treat. While the origin of stress-induced disorders seems to be where learning and stress intersect, this relationship and molecular pathways involved remain largely unresolved.

View Article and Find Full Text PDF

Bidirectional recurrent neural network approach for predicting cervical cancer recurrence and survival.

Sci Rep

December 2024

School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, Petaling Jaya, 47500, Selangor Darul Ehsan, Malaysia.

Cervical cancer is a deadly disease in women globally. There is a greater chance of getting rid of cervical cancer in case of earliest diagnosis. But for some patients, there is a chance of recurrence.

View Article and Find Full Text PDF

This study presents a web application for predicting cardiovascular disease (CVD) and hypertension (HTN) among mine workers using machine learning (ML) techniques. The dataset, collected from 699 participants at the Gol-Gohar mine in Iran between 2016 and 2020, includes demographic, occupational, lifestyle, and medical information. After preprocessing and feature engineering, the Random Forest algorithm was identified as the best-performing model, achieving 99% accuracy for HTN prediction and 97% for CVD, outperforming other algorithms such as Logistic Regression and Support Vector Machines.

View Article and Find Full Text PDF

Ensuring everyone enjoys healthy lifestyles and well-being at all ages, Progress has been made in increasing access to clean water and sanitation facilities and reducing the spread of epidemics and diseases. The synthesis of nano-particles (NPs) by using microalgae is a new nanobiotechnology due to the use of the biomolecular (corona) of microalgae as a capping and reducing agent for NP creation. This investigation explores the capacity of a distinct indigenous microalgal strain to synthesize silver nano-particles (AgNPs), as well as its effectiveness against multi-drug resistant (MDR) bacteria and its ability to degrade Azo dye (Methyl Red) in wastewater.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!