The Forward Model: A Unifying Theory for the Role of the Cerebellum in Motor Control and Sense of Agency.

Front Syst Neurosci

INSERM U-1127, CNRS UMR 7225, Institut du Cerveau, Faculté de Médecine, Sorbonne Université, La Pitié Salpêtrière Hospital, Paris, France.

Published: April 2021

AI Article Synopsis

  • For over 20 years, research has highlighted the cerebellum's key role in non-motor functions, linking it to learning, reward processing, and cognitive functions like the sense of agency.
  • Recent studies suggest that the cerebellum acts as a connector between sensory-motor functions and higher cognitive processes, facilitating our understanding and expectations of actions.
  • The forward model theory, originally from motor control, explains how the cerebellum uses predictive and feedback loops, placing it anatomically at the crossroads of motor and sensory systems to integrate these functions with cognition.

Article Abstract

For more than two decades, there has been converging evidence for an essential role of the cerebellum in non-motor functions. The cerebellum is not only important in learning and sensorimotor processes, some growing evidences show its implication in conditional learning and reward, which allows building our expectations about behavioral outcomes. More recent work has demonstrated that the cerebellum is also required for the sense of agency, a cognitive process that allows recognizing an action as our own, suggesting that the cerebellum might serve as an interface between sensorimotor function and cognition. A unifying model that would explain the role of the cerebellum across these processes has not been fully established. Nonetheless, an important heritage was given by the field of motor control: the forward model theory. This theory stipulates that movements are controlled based on the constant interactions between our organism and its environment through feedforward and feedback loops. Feedforward loops predict what is going to happen, while feedback loops confront the prediction with what happened so that we can react accordingly. From an anatomical point of view, the cerebellum is at an ideal location at the interface between the motor and sensory systems, as it is connected to cerebral, striatal, and spinal entities parallel loops, so that it can link sensory and motor systems with cognitive processes. Recent findings showing that the cerebellum participates in building the sense of agency as a predictive and comparator system will be reviewed together with past work on motor control within the context of the forward model theory.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8082178PMC
http://dx.doi.org/10.3389/fnsys.2021.644059DOI Listing

Publication Analysis

Top Keywords

forward model
12
role cerebellum
12
motor control
12
sense agency
12
cerebellum
8
model theory
8
feedback loops
8
motor
5
model unifying
4
theory
4

Similar Publications

Texture is a significant component used for several applications in content-based image retrieval. Any texture classification method aims to map an anonymously textured input image to one of the existing texture classes. Extensive ranges of methods for labeling image texture were proposed earlier.

View Article and Find Full Text PDF

Human immunodeficiency virus (HIV) manifests multiple infections in CD4+ T cells, by binding its envelope proteins to CD4 receptors. Understanding these biological processes is crucial for effective interventions against HIV/AIDS. Here, we propose a mathematical model that accounts for the multiple infections of CD4+ T cells and an intracellular delay in the dynamics of HIV infection.

View Article and Find Full Text PDF

The Gut in Critical Illness.

Curr Gastroenterol Rep

December 2025

Division of Pulmonary, Critical Care, and Sleep Medicine, Medical College of Wisconsin, 8701 West Watertown Plank Road, 8th Floor: HUB for Collaborative Medicine, Milwaukee, WI, 53226, USA.

Purpose Of Review: The purpose of this narrative review is to describe the mechanisms for gut dysfunction during critical illness, outline hypotheses of gut-derived inflammation, and identify nutrition and non-nutritional therapies that have direct and indirect effects on preserving both epithelial barrier function and gut microbiota during critical illness.

Recent Findings: Clinical and animal model studies have demonstrated that critical illness pathophysiology and interventions breach epithelial barrier function and convert a normally commensal gut microbiome into a pathobiome. As a result, the gut has been postulated to be the "motor" of critical illness and numerous hypotheses have been put forward to explain how it contributes to systemic inflammation and drives multiple organ failure.

View Article and Find Full Text PDF

Exploring oncology treatment strategies with tyrosine kinase inhibitors through advanced 3D models (Review).

Med Int (Lond)

December 2024

Department of Clinical and Experimental Medicine, Endocrine Unit 2, University of Pisa, I-56122 Pisa, Italy.

The limitations of two-dimensional (2D) models in cancer research have hindered progress in fully understanding the complexities of drug resistance and therapeutic failures. However, three-dimensional (3D) models provide a more accurate representation of environments, capturing critical cellular interactions and dynamics that are essential in evaluating the efficacy and toxicity of tyrosine kinase inhibitors (TKIs). These advanced models enable researchers to explore drug resistance mechanisms with greater precision, optimizing treatment strategies and improving the predictive accuracy of clinical outcomes.

View Article and Find Full Text PDF

Concerns Regarding the Use of Kirchhoff's Laws in Pharmacokinetics.

AAPS PharmSciTech

January 2025

Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, USA.

Over the last two years the idea that the principles presented in Kirchhoff's circuit and voltage laws also pertain to pharmacokinetics (1-3). It is claimed that these principles make the elimination in the liver and kidney more straight forward to model and provide a rationale for understanding why sometimes during bioavailability studies one arrives at bioavailability values greater than 100%. In this paper it will be shown that these claims are based on incorrect translations of the Kirchhoff's Laws to pharmacokinetics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!