Polymer-Assisted Aripiprazole-Adipic Acid Cocrystals Produced by Hot Melt Extrusion Techniques.

Cryst Growth Des

Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA.

Published: July 2020

Pharmaceutical cocrystals are a promising strategy to increase the solubility and dissolution rate of poorly soluble drugs. However, their manufacturing process requires a large quantity of solvents. The present study aimed to produce cocrystals by a solvent-free hot melt extrusion (HME) method to improve their solubility and dissolution rate. Aripiprazole (ARP) and adipic acid (ADP) were used as a weakly basic drug and acidic coformer, respectively. The processability of a plain ARP-ADP physical mixture (PM) compared with a PM with 5% Soluplus® (SOL) was investigated. Incorporating 5% SOL into the ARP-ADP blend reduced the processing torque and improved processability. The effects of temperature and screw speed on the formation of cocrystals were studied, and cocrystals were characterized by differential scanning calorimetry (DSC), fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, powder X-ray diffraction (PXRD), scanning electron microscopy, and hot-stage microscopy. FTIR spectra revealed noncovalent interaction between ARP and ADP, which was confirmed by NMR spectra. Similarly, PXRD data exhibited characteristic peaks confirming the formation of new crystalline material. Further, the results indicated that cocrystals demonstrated higher dissolution rates and improved compressibility, as well as enhanced flow characteristics compared with pure ARP, suggesting its suitability in the development of solid dosage forms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8081332PMC
http://dx.doi.org/10.1021/acs.cgd.0c00020DOI Listing

Publication Analysis

Top Keywords

hot melt
8
melt extrusion
8
solubility dissolution
8
dissolution rate
8
cocrystals
6
polymer-assisted aripiprazole-adipic
4
aripiprazole-adipic acid
4
acid cocrystals
4
cocrystals produced
4
produced hot
4

Similar Publications

3D-Printed Tablets of Nifurtimox: In Vitro and In Vivo Anti- Studies.

Pharmaceutics

January 2025

Institute of Chemistry Rosario, National Council for Scientific and Technical Research (IQUIR-CONICET), Rosario 2000, Argentina.

: Chagas disease is a neglected tropical disease caused by infection with the parasite . Benznidazole and nifurtimox are the only approved drugs for treating this condition, but their low aqueous solubility may lead to erratic bioavailability. This work aimed for the first time to formulate tablets of nifurtimox by hot melt extrusion coupled with 3D printing as a strategy to increase drug dissolution and the production of tablets with dosage on demand.

View Article and Find Full Text PDF

Self-emulsifying drug delivery systems (SEDDS) represent an innovative approach to improving the solubility and bioavailability of poorly water-soluble drugs, addressing significant challenges associated with oral drug delivery. This review highlights the advancements and applications of SEDDS, including their transition from liquid to solid forms, while addressing the formulation strategies, characterization techniques, and future prospects in pharmaceutical sciences. The review systematically analyzes existing studies on SEDDS, focusing on their classification into liquid and solid forms and their preparation methods, including spray drying, hot-melt extrusion, and adsorption onto carriers.

View Article and Find Full Text PDF

Curcumin and hesperetin are plant polyphenols known for their poor solubility. To address this limitation, we prepared amorphous PVP K30-phosphatidylcholine dispersions via hot-melt extrusion. This study aimed to evaluate the effects of the amounts of active ingredients and phosphatidylcholine, as well as the process temperature, on the performance of the dispersions.

View Article and Find Full Text PDF

In recent years, with the increasing patient population, the need for complex and patient-centric medications has increased enormously. Traditional manufacturing techniques such as direct blending, high shear granulation, and dry granulation can be used to develop simple solid oral medications. However, it is well known that "one size fits all" is not true for pharmaceutical medicines.

View Article and Find Full Text PDF

Large Improvements in the Thermoelectric Properties of SnSe by Fast Cooling.

Materials (Basel)

January 2025

Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.

As reported during the last five years, SnSe is one of the leading thermoelectric (TE) materials with a very low lattice thermal conductivity. However, its elements are not as heavy as those of classical thermoelectric materials like PbTe or BiTe. Its outstanding TE properties were revealed after repeated purification steps to minimize the amount of oxygen contamination, followed by spark plasma sintering.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!