AI Article Synopsis

  • Accurate assessment of fetal gestational age (GA) is essential for managing pregnancy, and ultrasound (US) is commonly used in industrialized countries for this purpose.
  • In low- and middle-income countries, low-cost obstetric US can automate fetal structure measurements, potentially reducing the need for skilled sonographers.
  • A developed framework using a large annotated database can classify and measure fetal structures with high accuracy, achieving a mean average error of 1.4 days in estimating GA compared to expert sonographer estimates.

Article Abstract

Accurate assessment of fetal gestational age (GA) is critical to the clinical management of pregnancy. Industrialized countries rely upon obstetric ultrasound (US) to make this estimate. In low- and middle- income countries, automatic measurement of fetal structures using a low-cost obstetric US may assist in establishing GA without the need for skilled sonographers. In this report, we leverage a large database of obstetric US images acquired, stored and annotated by expert sonographers to train algorithms to classify, segment, and measure several fetal structures: biparietal diameter (BPD), head circumference (HC), crown rump length (CRL), abdominal circumference (AC), and femur length (FL). We present a technique for generating raw images suitable for model training by removing caliper and text annotation and describe a fully automated pipeline for image classification, segmentation, and structure measurement to estimate the GA. The resulting framework achieves an average accuracy of 93% in classification tasks, a mean Intersection over Union accuracy of 0.91 during segmentation tasks, and a mean measurement error of 1.89 centimeters, finally leading to a 1.4 day mean average error in the predicted GA compared to expert sonographer GA estimate using the Hadlock equation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8086527PMC
http://dx.doi.org/10.1117/12.2582243DOI Listing

Publication Analysis

Top Keywords

image classification
8
classification segmentation
8
gestational age
8
fetal structures
8
automated framework
4
framework image
4
fetal
4
segmentation fetal
4
fetal ultrasound
4
ultrasound images
4

Similar Publications

GradeDiff-IM: An Ensembles Model-based Grade Classification of Breast Cancer.

Biomed Phys Eng Express

January 2025

School of Engineering and Computing, University of the West of Scotland, University of the West of Scotland - Paisley Campus, Paisley PA1 2BE, UK, City, Paisley, PA1 2BE, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

Cancer grade classification is a challenging task identified from the cell structure of healthy and abnormal tissues. The partitioner learns about the malignant cell through the grading and plans the treatment strategy accordingly. A major portion of researchers used DL models for grade classification.

View Article and Find Full Text PDF

This paper systematically evaluates saliency methods as explainability tools for convolutional neural networks trained to diagnose glaucoma using simplified eye fundus images that contain only disc and cup outlines. These simplified images, a methodological novelty, were used to relate features highlighted in the saliency maps to the geometrical clues that experts consider in glaucoma diagnosis. Despite their simplicity, these images retained sufficient information for accurate classification, with balanced accuracies ranging from 0.

View Article and Find Full Text PDF

Mild cognitive impairment (MCI) is a significant predictor of the early progression of Alzheimer's disease, and it can be used as an important indicator of disease progression. However, many existing methods focus mainly on the image itself when processing brain imaging data, ignoring other non-imaging data (e.g.

View Article and Find Full Text PDF

Texture is a significant component used for several applications in content-based image retrieval. Any texture classification method aims to map an anonymously textured input image to one of the existing texture classes. Extensive ranges of methods for labeling image texture were proposed earlier.

View Article and Find Full Text PDF

High-performance ternary logic circuits and neural networks based on carbon nanotube source-gating transistors.

Sci Adv

January 2025

Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China.

Multi-valued logics (MVLs) offer higher information density, reduced circuit and interconnect complexity, lower power dissipation, and faster speed over conventional binary logic system. Recent advancement in MVL research, particularly with emerging low-dimensional materials, suggests that breakthroughs may be imminent if multistates transistors can be fabricated controllably for large-scale integration. Here, a concept of source-gating transistors (SGTs) is developed and realized using carbon nanotubes (CNTs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!