Background: Over the last few years there has been increasing attention to detect early signs of impairment in young Duchenne muscular dystrophy boys but less has been reported on whether the delay may also affect the very early aspects of motor development, such as gross motor milestones.
Objective: The aim of this study was to retrospectively assess the age when early motor milestones were achieved in Duchenne muscular dystrophy.
Methods: The study is a retrospective analysis of data collected as part of a larger natural history project. Information on past medical history, collected at the time the boys were seen for the first time, were recorded and re available on clinical notes and on electronic CRF.
Results: Data were collected in 134 DMD boys. Sitting was achieved at 7.04 months. The % of DMD boys not achieving sitting by 9.4 months was 10%, ranging from 2% in the boys with mutations before exon 44 to 33% in those beyond exon 63. Walking was achieved at a mean age of 16.35 months. The % of DMD boys not achieving independent walking by 18 months was 17%, ranging from 9% in the boys with mutations between 44 and 51 to 42% in those beyond exon 63.
Conclusions: Our results showed that the risk of a delay in sitting and walking was increasingly high in patients with mutations predictive of the involvement of different brain dystrophin isoforms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8385509 | PMC |
http://dx.doi.org/10.3233/JND-210640 | DOI Listing |
J Neuroeng Rehabil
January 2025
Department of BioMechanical Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, South-Holland, The Netherlands.
Duchenne Muscular Dystrophy (DMD) progressively leads to loss of limb function due to muscle weakness. The incurable nature of the disease shifts the focus to improving quality of life, including assistive supports to improve arm function. Over time, the passive joint impedance (Jimp) of people with DMD increases.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Center for RNA Medicine, Department of Clinical Medicine, Aalborg University, 2450 Copenhagen, Denmark.
microRNA-22 (miR-22) plays a pivotal role in the regulation of metabolic processes and has emerged as a therapeutic target in metabolic disorders, including obesity, type 2 diabetes, and metabolic-associated liver diseases. While miR-22 exhibits context-dependent effects, promoting or inhibiting metabolic pathways depending on tissue and condition, current research highlights its therapeutic potential, particularly through inhibition strategies using chemically modified antisense oligonucleotides. This review examines the dual regulatory functions of miR-22 across key metabolic pathways, offering perspectives on its integration into next-generation diagnostic and therapeutic approaches while acknowledging the complexities of its roles in metabolic homeostasis.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Neuromuscular Reference Center and Department of Neurology, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium.
The most severe form of muscular dystrophy (MD), known as Duchenne MD (DMD), remains an incurable disease, hence the ongoing efforts to develop supportive therapies. The dysregulation of autophagy, a degradative yet protective mechanism activated when tissues are under severe and prolonged stress, is critically involved in DMD. Treatments that harness autophagic capacities therefore represent a promising therapeutic approach.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Genomic Medicine Laboratory UILDM, IRCCS Santa Lucia Foundation, 00179 Rome, Italy.
Background/objectives: Artificial intelligence and large language models like ChatGPT and Google's Gemini are promising tools with remarkable potential to assist healthcare professionals. This study explores ChatGPT and Gemini's potential utility in assisting clinicians during the first evaluation of patients with suspected neurogenetic disorders.
Methods: By analyzing the model's performance in identifying relevant clinical features, suggesting differential diagnoses, and providing insights into possible genetic testing, this research seeks to determine whether these AI tools could serve as a valuable adjunct in neurogenetic assessments.
Biomedicines
January 2025
Thoracic-Cardiovascular Department, Azienda Ospedaliero-Universitaria Maggiore della Carità, 28100 Novara, Italy.
Cardiomyopathy represents the most important life-limiting condition of Duchenne muscular dystrophy (DMD) patients after the age of 20. Genetic alterations in the DMD gene result in the absence of functional dystrophin protein, leading to skeletal/cardiac muscle impairment. The DMD incidence is one in 5000 live male births.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!