In this study, the original chloramphenicol aptamer containing 80 bases was truncated to 30 bases with high affinity by the SYBR Green I assay. It was found that the ionic strength and type affect the recognition of aptamers, especially magnesium ion played a vital role in the binding process. Furthermore, the binding performance of aptamer, including binding mode, key binding sites and conformational changes were further investigated by circular dichroism spectroscopy, UV-vis absorption spectrum and molecular docking. Based on these research data, we inferred that chloramphenicol bound to the minor groove region in the aptamer double helix. Finally, the optimized aptamer LLR10 was used to develop a novel label free fluorescence polarization assay to detect chloramphenicol within SYBR Green I as the source of fluorescence polarization signal. Under optimal conditions, the designed method showed a linear detection range of 0.1-10 nM with a detection limit of 0.06 nM. Additionally, the aptasensor exhibited a high accuracy to the detection of chloramphenicol in milk samples with a recovery rate from 93.7% to 98.4%. Therefore, the developed label free fluorescence polarization aptasensor provides a new idea for the rapid, reliable and sensitive detection of chloramphenicol, which can be applied to food safety control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2021.122349 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!