Environmental regulation, import trade, and green technology innovation.

Environ Sci Pollut Res Int

School of Public Economics and Administration, Shanghai University of Finance and Economics, Shanghai, 200433, China.

Published: February 2022

To further clarify the relationship between environmental regulation and green technology innovation and discuss how environmental regulation affects green technology innovation through import trade, this paper analyzes the impacts of environmental regulation and import trade on green technology innovation and the transmission effect of import trade based on panel data for 30 provinces in China for 2008 to 2017. The results show that (1) environmental regulation first plays a role in promoting green technology innovation and then restrains it, and import trade can significantly promote green technology innovation; (2) under the constraints of stronger environmental regulations, import trade has a significantly positive effect on green technology innovation; and (3) environmental regulation can further enhance the technology spillover effects of import trade in regions with high absorptive capacity and regions with high levels of R&D investment. This paper analyzes the impact of environmental regulation on green technology innovation from the perspective of import trade and makes up for the deficiencies of existing research. It also lays a foundation for scholars to study the relationship between environmental regulation and green technology innovation in the midst of heterogeneous government regulation capabilities and industries in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-13490-9DOI Listing

Publication Analysis

Top Keywords

green technology
36
technology innovation
36
environmental regulation
32
import trade
32
regulation green
16
technology
10
environmental
9
green
9
innovation
9
import
8

Similar Publications

A scoping review of the patient experience with wearable technology.

Digit Health

December 2024

D'Amore-McKim School of Business, Northeastern University, Boston, Massachusetts, USA.

Objective: This scoping review explores patients' experience with wearable technology. Its aims are to: (a) examine studies that contain empirical findings related to patients' experience with wearables; (b) compare these findings within and across studies; and (c) identify areas in need of greater understanding.

Methods: A Preferred Reporting Items for Scoping Review (PRISMA) guided approach was followed.

View Article and Find Full Text PDF

In this study, L. extracts were obtained using various green extraction techniques, including supercritical CO, subcritical ethanol, and ultrasound-assisted extraction, each performed under optimized parameters. The phytochemical content of the extracts was analyzed using the LC-MS/MS technique, quantifying 53 phytochemicals.

View Article and Find Full Text PDF

Introduction: The assessment of the severity of fruit disease is crucial for the optimization of fruit production. By quantifying the percentage of leaf disease, an effective approach to determining the severity of the disease is available. However, the current prediction of disease degree by machine learning methods still faces challenges, including suboptimal accuracy and limited generalizability.

View Article and Find Full Text PDF

Design and Synthesis of Novel Dual-Functional Protic Ionic Liquids with a Superior High CO Absorption Efficiency.

J Phys Chem B

December 2024

Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China.

As a predictive tool, quantum chemical calculations can be used to design protic ionic liquids (PILs) and predict the result. By adding anionic negative potential sites, two dual-functional PILs diethylenetriamine-barbituric acid [CHN][CHNO] and diethylenetriamine-ethylenolactonium [CHN][CHNO] were designed. The simulation results indicated that multisite absorption of anions and cations resulted in an expected absorption ratio exceeding 3:1 (mol CO:mol ILs).

View Article and Find Full Text PDF

High-Brightness Color-Tunable AC-Driven Quantum Dot Light-Emitting Diodes for Integrated Passive High-Electric-Field Contactless Detection.

ACS Appl Mater Interfaces

December 2024

Institute of Optoelectronics Technology, Key Laboratory of Luminescence and Optical Information, Beijing Jiaotong University, Beijing 100044, China.

This work explores the carrier recombination dynamics of AC-driven quantum dot (QD) light-emitting diodes (AC-QLEDs) and proposes their application in the field of electric field contactless detection. Different sequences of green QD (GQD)/red QD (RQD) bilayer thin films as the emission layer of AC-QLEDs were fabricated via film transfer printing to ensure the complete morphology of each layer. AC-QLEDs with the emission layer as the sequence of GQD + RQD (GR-QLEDs) show a significantly enhanced carrier recombination efficiency due to its stable energy level structure, achieving the highest peak brightness ever recorded for vertically emitting brightness of 1648.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!