A new support for the immobilization of β-d-galactosidase from Kluyveromyces lactis was developed, consisting of mesoporous silica/titania with a chitosan coating. This support presents a high available surface area and adequate pore size for optimizing the immobilization efficiency of the enzyme and, furthermore, maintaining its activity. The obtained supported biocatalyst was applied in enzyme hydrolytic activity tests with o-NPG, showing high activity 1223 Ug, excellent efficiency (74%), and activity recovery (54%). Tests of lactose hydrolysis in a continuous flow reactor showed that during 14 days operation, the biocatalyst maintained full enzymatic activity. In a batch system, after 15 cycles, it retained approximately 90% of its initial catalytic activity and attained full conversion of the lactose 100% (±12%). Additionally, with the use of the mesoporous silica/titania support, the biocatalyst presented no deformation and fragmentation, in both systems, demonstrating high operational stability and appropriate properties for applications in food manufacturing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2021.129890 | DOI Listing |
Soft Matter
September 2024
Harvard John A. Paulson School of Engineering and Applied Sciences, 150 Western Ave., Boston MA 02134, USA.
Hierarchically structured supraparticles can be produced by drying droplets of colloidal suspensions. Using binary suspensions provides degrees of structural and functional control beyond those possible for single components, while remaining tractable for fundamental mechanistic studies. Here, we implement evaporative co-assembly of two distinct particle types - 'large' polystyrene microparticles and 'small' inorganic oxide nanoparticles (silica, titania, zirconia, or ceria) - dried on superhydrophobic surfaces to produce bowl-shaped supraparticles.
View Article and Find Full Text PDFACS Appl Bio Mater
July 2024
Department of Materials, Engineering Building A, University of Manchester, Manchester M13 9PL, U.K.
The present work aims to develop optimized scaffolds for bone repair by incorporating mesoporous nanoparticles into them, thereby combining bioactive factors for cell growth and preventing rapid release or loss of effectiveness. We synthesized biocompatible and biodegradable scaffolds designed for the controlled codelivery of curcumin (CUR) and recombinant human bone morphogenic protein-2 (rhBMP-2). Active agents in dendritic silica/titania mesoporous nanoparticles (DSTNs) were incorporated at different weight percentages (0, 2, 5, 7, 9, and 10 wt %) into a matrix of polycaprolactone (PCL) and polyethylene glycol (PEG) nanofibers, forming the CUR-BMP-2@DSTNs/PCL-PEG delivery system (S0, S2, S5, S7, S9, and S10, respectively, with the number showing the weight percentage).
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2024
Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Florida, 1710 Johannesburg, South Africa. Electronic address:
Sulfamethoxazole (SMX) is a prevalent sulfonamide antibiotic found in the environment, and it has a variety of detrimental effects on environmental sustainability and water safety. Recently, the combination of photocatalysis and sulfate radical-based advanced oxidation processes (SR-AOPs) has attracted a lot of interest as a viable technique for degradation of refractory pollutants. In this study, a visible light active CuFeS supported on dendritic mesoporous silica-titania (CuFeS-DMST) photocatalyst was synthesized to improve the ability of TiO to activate persulfate (PS) by introducing CuFeS (Fe/Fe, Cu/Cu redox cycles).
View Article and Find Full Text PDFNanomaterials (Basel)
May 2023
Department of Chemical Engineering, Myongji University, Yongin-Si 17058, Gyeonggi-Do, Republic of Korea.
In this paper, we have fabricated non-volatile memory resistive switching (RS) devices and analyzed analog memristive characteristics using lateral electrodes with mesoporous silica-titania (meso-ST) and mesoporous titania (meso-T) layers. For the planar-type device having two parallel electrodes, current-voltage (I-V) curves and pulse-driven current changes could reveal successful long-term potentiation (LTP) along with long-term depression (LTD), respectively, by the RS active mesoporous two layers for 20~100 μm length. Through mechanism characterization using chemical analysis, non-filamental memristive behavior unlike the conventional metal electroforming was identified.
View Article and Find Full Text PDFBiomater Adv
May 2023
Department of Microbiology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpaşa, Büyükçekmece, Istanbul, Türkiye.
This research presents a new approach for the synthesis of inorganic nano-platforms containing >2 layers. Nano-platforms were characterized using scanning electron microscopy, X-ray diffraction, fluorescence and Fourier transform infrared spectroscopy, fluorescence microscopy, dynamic light scattering, thermogravimetric analysis, Brunauer-Emmett-Teller, etc. Since it has been reported that the maximum tolerable dose of non-porous silica nanoparticles (NPs) in in-vivo studies is higher than that of mesoporous silica, the non-porous silica was prepared.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!