Learnable Heterogeneous Convolution: Learning both topology and strength.

Neural Netw

Lynxi Technologies, Beijing 100097, China. Electronic address:

Published: September 2021

Existing convolution techniques in artificial neural networks suffer from huge computation complexity, while the biological neural network works in a much more powerful yet efficient way. Inspired by the biological plasticity of dendritic topology and synaptic strength, our method, Learnable Heterogeneous Convolution, realizes joint learning of kernel shape and weights, which unifies existing handcrafted convolution techniques in a data-driven way. A model based on our method can converge with structural sparse weights and then be accelerated by devices of high parallelism. In the experiments, our method either reduces VGG16/19 and ResNet34/50 computation by nearly 5× on CIFAR10 and 2× on ImageNet without harming the performance, where the weights are compressed by 10× and 4× respectively; or improves the accuracy by up to 1.0% on CIFAR10 and 0.5% on ImageNet with slightly higher efficiency. The code will be available on www.github.com/Genera1Z/LearnableHeterogeneousConvolution.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neunet.2021.03.038DOI Listing

Publication Analysis

Top Keywords

learnable heterogeneous
8
heterogeneous convolution
8
convolution techniques
8
convolution
4
convolution learning
4
learning topology
4
topology strength
4
strength existing
4
existing convolution
4
techniques artificial
4

Similar Publications

Learnable color space conversion and fusion for stain normalization in pathology images.

Med Image Anal

December 2024

School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China; Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China; Shanghai Clinical Research and Trial Center, Shanghai, China. Electronic address:

Variations in hue and contrast are common in H&E-stained pathology images due to differences in slide preparation across various institutions. Such stain variations, while not affecting pathologists much in diagnosing the biopsy, pose significant challenges for computer-assisted diagnostic systems, leading to potential underdiagnosis or misdiagnosis, especially when stain differentiation introduces substantial heterogeneity across datasets from different sources. Traditional stain normalization methods, aimed at mitigating these issues, often require labor-intensive selection of appropriate templates, limiting their practicality and automation.

View Article and Find Full Text PDF

Compared to artificial neural networks (ANNs), spiking neural networks (SNNs) present a more biologically plausible model of neural system dynamics. They rely on sparse binary spikes to communicate information and operate in an asynchronous, event-driven manner. Despite the high heterogeneity of the neural system at the neuronal level, most current SNNs employ the widely used leaky integrate-and-fire (LIF) neuron model, which assumes uniform membrane-related parameters throughout the entire network.

View Article and Find Full Text PDF

The identification of disease-related long noncoding RNAs (lncRNAs) is beneficial to unravel the intricacies of gene expression regulation and epigenetic signatures. Computational methods provide a cost-effective means to explore lncRNA-disease associations (LDAs). However, these methods often lack interpretability, leaving their predictions less convincing to biological and medical researchers.

View Article and Find Full Text PDF

Federated learning (FL) effectively mitigates the data silo challenge brought about by policies and privacy concerns, implicitly harnessing more data for deep model training. However, traditional centralized FL models grapple with diverse multi-center data, especially in the face of significant data heterogeneity, notably in medical contexts. In the realm of medical image segmentation, the growing imperative to curtail annotation costs has amplified the importance of weakly-supervised techniques which utilize sparse annotations such as points, scribbles, etc.

View Article and Find Full Text PDF

Automated electrosynthesis reaction mining with multimodal large language models (MLLMs).

Chem Sci

October 2024

Department of Chemistry, University of Toronto, Lash Miller Chemical Laboratories 80 St. George Street ON M5S 3H6 Toronto Canada

Leveraging the chemical data available in legacy formats such as publications and patents is a significant challenge for the community. Automated reaction mining offers a promising solution to unleash this knowledge into a learnable digital form and therefore help expedite materials and reaction discovery. However, existing reaction mining toolkits are limited to single input modalities (text or images) and cannot effectively integrate heterogeneous data that is scattered across text, tables, and figures.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!