Background: Epidemiological evidence associates chronic exposure to particulate matter (PM) with respiratory damage and lung cancer. Inhaled PM may induce systemic effects including inflammation and metastasis. This study evaluated whether PM induces expression of adhesion molecules in lung cancer cells promoting interaction with monocytes.
Methods: The expression of early and late adhesion molecules and their receptors was evaluated in A549 (human lung adenocarcinoma) cells using a wide range of concentrations of PM and PM. Then we evaluated cellular adhesion between A549 cells and U937 (human monocytes) cells after PM exposure.
Results: We found higher expression of both early and late adhesion molecules and their ligands in lung adenocarcinoma cells exposed to PM and PM particles present in the air pollution at Mexico City from 0.03 μg/cm with a statistically significant difference (p ≤ 0.05). PM had stronger effect than PM. Both PM also stimulated cellular adhesion between tumor cells and monocytes.
Conclusions: This study reveals a comprehensive expression profile of adhesion molecules and their ligands upregulated by PM and PM in A549 cells. Additionally these particles induced cellular adhesion of lung cancer cells to monocytes. This highlights possible implications of PM in two cancer hallmarks i.e. inflammation and metastasis, underlying the high cancer mortality associated with air pollution.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.envres.2021.111242 | DOI Listing |
Eur J Med Chem
January 2025
School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China. Electronic address:
Temozolomide, a widely used alkylating agent for glioblastoma treatment, faces significant challenges due to the development of resistance, which severely impacts patient survival. This underscores the urgent need for novel strategies to overcome this barrier. Focal adhesion kinase (FAK), an intracellular non-receptor tyrosine kinase, is highly expressed in glioblastoma cells and has been identified as a promising therapeutic target for anti-glioblastoma drug development.
View Article and Find Full Text PDFProteomics Clin Appl
January 2025
SPHERE Research Group, Conway Institute, University College Dublin, Dublin, Ireland.
Purpose: Multiple Sclerosis is an inflammatory neurodegenerative disease characterised by blood-brain barrier dysfunction and leukocyte infiltration into the CNS. Platelets are best known for their contributions to haemostasis, however, upon activation, platelets release an abundance of soluble and vesicular-associated proteins, termed the platelet releasate (PR). This milieu contains numerous inflammatory and vasoactive proteins, that can attract leukocytes and alter endothelial permeability.
View Article and Find Full Text PDFJ Thorac Dis
December 2024
Department of Cardiovascular Surgery, Ageo Central General Hospital, Saitama, Japan.
Background: Cardiac surgery-associated acute kidney injury (CSA-AKI) results in poor prognosis. Several risk factors for CSA-AKI have been reported, including preoperative creatinine level, cardiopulmonary bypass time, and perioperative blood pressure management. Only few studies have reported the effect of vascular stiffness on the incidence of CSA-AKI, and there are is no study reporting on endothelial function and its association with CSA-AKI.
View Article and Find Full Text PDFBiofilm
December 2024
Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
Biodegradable polymeric coatings are being explored as a preventive strategy for orthopaedic device-related infection. In this study, titanium surfaces (Ti) were coated with poly-D,L-lactide (PDLLA, (P)), polyethylene-glycol poly-D,L-lactide PEGylated-PDLLA, (PP20)), or multi-layered PEGylated-PDLLA (M), with or without 1 % silver sulfadiazine. The aim was to evaluate their cytocompatibility, resistance to biofilm formation, and their potential to enhance the susceptibility of any biofilm formed to antibiotics.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Orthopedics, The Second Hospital of Jilin University, Changchun, 130041, Jilin, China.
Titanium alloys are widely used in the manufacture of orthopedic prosthesis given their excellent mechanical properties and biocompatibility. However, the primary drawbacks of traditional titanium alloy prosthesis are their much higher elastic modulus than cancellous bone and poor interfacial adhesion, which lead to poor osseointegration. 3D-printed porous titanium alloys can partly address these issues, but their bio-inertness still requires modifications to adapt to different physiological and pathological microenvironments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!