Perfluoropolyethers, also known as ether-PFAS, are linear or branched alkyl ether polymers, where the substituent hydrogens on the carbon atoms in the chain have been fully replaced by fluorine atoms. Some of these molecules may have a carboxylate functional group attached to one of the terminal carbon atoms to form an ether-PFAS carboxylate. Perfluoropolyethers are used as processing aids in the manufacture of various types of perfluorinated polymeric materials which are used in a variety of consumer applications. Although the physicochemical and toxicological properties of certain perfluoropolyether compounds have been extensively studied, data are relatively sparse for some members of this class of compounds. Moreover, the physicochemical, toxicokinetic, and toxicological properties of ether-PFAS as a class have not been elucidated in previous comprehensive review articles. This article reviews the nomenclature and uses of ether-PFAS and compares the physicochemical properties, toxicokinetic characteristics, apical effects in toxicological studies, and dose-response profiles across four specific ether-PFAS compounds. This comparison, including a description of identified data gaps should help to inform the design of studies to further elucidate the characteristics of ether-PFAS and to propose potential read-across assessment strategies for members of this class.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.taap.2021.115531 | DOI Listing |
Environ Sci Ecotechnol
January 2025
Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia.
Managing plastic waste is one of the greatest challenges humanity faces in the coming years. Current strategies-landfilling, incineration, and recycling-remain insufficient or pose significant environmental concerns, failing to address the growing volume of plastic residues discharged into the environment. Recently, increasing attention has focused on the potential of certain insect larvae species to chew, consume, and partially biodegrade synthetic polymers such as polystyrene and polyethylene, offering novel biotechnological opportunities for plastic waste management.
View Article and Find Full Text PDFAME Case Rep
September 2024
Department of Nephrology, Appalachian Regional Healthcare, Harlan, KY, USA.
Background: The theophylline toxidrome presents with multisystemic involvement that includes cardiovascular, neurologic, metabolic, musculoskeletal, and gastrointestinal manifestations. Considering such a varied spectrum of presentations, it is often difficult to ascertain the diagnosis of this particular toxidrome. Review of home medications is an important step when working with a patient presenting as a toxidrome.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
January 2025
Wageningen Food Safety Research (WFSR), Wageningen University & Research, Wageningen, The Netherlands.
The growing environmental pressure of the animal food chain requires a system shift toward more sustainable diets based on alternative protein sources. Emerging alternative protein sources, such as faba bean, mung bean, lentil, black gram, cowpea, quinoa, hemp, leaf proteins, microalgae, and duckweeds, are being explored for their potential in meeting global protein demand and were, therefore, the subject of this review. This systematic literature review aims to understand the current knowledge on the toxicological effects and allergenic potential associated with these sources and derived protein and food products.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Posgrado en Botánica, Colegio Postgraduados Campus Montecillo Km. 36.5 Carretera México-Texcoco C.P. Montecillo, 56264, Texcoco Estado de México, México. Electronic address:
Ethnopharmacological Relevance: Taxus globosa Schltdl. (Taxaceae) is commonly named "Tejo mexicano". It's a Mexican plant known in folk medicine as a remedy for pain such as stomachache and headache, arthritis, gout, and other inflammatory conditions.
View Article and Find Full Text PDFInt J Hyg Environ Health
January 2025
Institute of Environmental Assessment and Water Research - Spanish Research council (IDAEA-CSIC), Barcelona, 08034, Spain; Spanish Ministry of Ecological Transition, Pollution Prevention Unit, Pza. San Juan de la Cruz 10, 28071, Madrid, Spain.
Research on nanoparticle (NP) release and potential exposure can be assessed through experimental field campaigns, laboratory simulations, and prediction models. However, risk assessment models are typically designed for manufactured NP (MNP) and have not been adapted for incidental NP (INP) properties. A notable research gap is identifying NP sources and their chemical, physical, and toxicological properties, especially in real-world settings.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!