AI Article Synopsis

  • A deletion mutation in the nebulin gene was discovered in a 26-year-old Finnish female patient with distal congenital myopathy and asymmetric muscle weakness.
  • Muscle biopsies showed characteristics like predominance of type 1 fibers and central nuclei, but lacked traditional nemaline bodies.
  • The mutation was identified through advanced genomic analysis techniques, and the clinical symptoms mirrored those of other similar conditions but with unique asymmetrical weakness not previously reported.

Article Abstract

We report the first mosaic mutation, a deletion of exons 11-107, identified in the nebulin gene in a Finnish patient presenting with a predominantly distal congenital myopathy and asymmetric muscle weakness. The female patient is ambulant and currently 26 years old. Muscle biopsies showed myopathic features with type 1 fibre predominance, strikingly hypotrophic type 2 fibres and central nuclei, but no nemaline bodies. The deletion was detected in a copy number variation analysis based on next-generation sequencing data. The parents of the patient did not carry the deletion. Mosaicism was detected using a custom, targeted comparative genomic hybridisation array. Expression of the truncated allele, less than half the size of full-length nebulin, was confirmed by Western blotting. The clinical and histological picture resembled that of a family with a slightly smaller deletion, and that in patients with recessively inherited distal forms of nebulin-caused myopathy. Asymmetry, however, was a novel feature.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nmd.2021.03.006DOI Listing

Publication Analysis

Top Keywords

deletion
5
congenital asymmetric
4
asymmetric distal
4
distal myopathy
4
myopathy hemifacial
4
hemifacial weakness
4
weakness caused
4
caused heterozygous
4
heterozygous large
4
large novo
4

Similar Publications

Renal Tubule-Specific Angiotensinogen Deletion Attenuates SGLT2 Expression and Ameliorates Diabetic Kidney Disease in Murine Models of Type 1 Diabetes.

Diabetes

January 2025

Centre de recherche, Centre hospitalier de l'Université de Montréal (CRCHUM) and Département de médecine, Université de Montréal, 900 Saint Denis Street, Montréal, QC Canada H2X 0A9.

The role of the intrarenal renin-angiotensin system (iRAS) in diabetic kidney disease (DKD) progression remains unclear. In this study, we generated mice with renal tubule-specific deletion of angiotensinogen (Agt; RT-Agt-/-) in both Akita and streptozotocin (STZ)-induced mouse model of diabetes. Both Akita RT-Agt-/- and STZ-RT-Agt-/- mice exhibited significant attenuation of glomerular hyperfiltration, urinary albumin/creatinine ratio, glomerulomegaly and tubular injury.

View Article and Find Full Text PDF

Chronic low-grade inflammation observed in older adults, termed inflammaging, is a common feature underlying a multitude of aging-associated maladies including a decline in hematopoietic activity. However, whether suppression of inflammaging can preserve hematopoietic health span remains unclear, in part because of a lack of tools to measure inflammaging within hematopoietic stem cells (HSCs). Here, we identify thrombospondin-1 (Thbs1) as an essential regulator of inflammaging within HSCs.

View Article and Find Full Text PDF

Transcriptional regulation of adipocyte lipolysis by IRF2BP2.

Sci Adv

January 2025

Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.

Adipocyte lipolysis controls systemic energy levels and metabolic homeostasis. Lipolysis is regulated by posttranslational modifications of key lipolytic enzymes. However, less is known about the transcriptional mechanisms that regulate lipolysis.

View Article and Find Full Text PDF

Fluid shear stress (FSS) from blood flow sensed by vascular endothelial cells (ECs) determines vessel behavior, but regulatory mechanisms are only partially understood. We used cell state transition assessment and regulation (cSTAR), a powerful computational method, to elucidate EC transcriptomic states under low shear stress (LSS), physiological shear stress (PSS), high shear stress (HSS), and oscillatory shear stress (OSS) that induce vessel inward remodeling, stabilization, outward remodeling, or disease susceptibility, respectively. Combined with a publicly available database on EC transcriptomic responses to drug treatments, this approach inferred a regulatory network controlling EC states and made several notable predictions.

View Article and Find Full Text PDF

Background: 22q11 deletion syndrome consists of a variable grouping of phenotypic features and immunological defects secondary to the loss of genetic material located in the 22q11.2 band. The 22q11 deletion spectrum encompasses different syndromes related to the same etiology and with overlapping anomalies, including DiGeorge syndrome, velocardiofacial syndrome, among others.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!