Energy recovery from lignocellulosic waste has been studied as an alternative to the problem of inappropriate waste disposal. The present study aimed at characterizing the microbial community and the functional activity of reactors applied to H production through lignocellulosic waste fermentation in optimized conditions. The latter were identified by means of Rotational Central Composite Design (RCCD), applied to optimize allochthonous inoculum concentration (2.32-5.68 gTVS/L of granular anaerobic sludge), pH (4.32-7.68) and Citrus Peel Waste (CPW) concentration (1.55-28.45 g/L). After validation, the conditions identified for optimal H production were 4 gSTV/L of allochthonous inoculum, 29.8 g/L of CPW (substrate) and initial pH of 8.98. In these conditions, 48.47 mmol/L of H was obtained, which is 3.64 times higher than the concentration in unoptimized conditions (13.31 mmol H/L using 15 g/L of CPW, 2 gTVS/L of allochthonous inoculum, pH 7.0). Acetogenesis was the predominant pathway, and maximal concentrations of 3,731 mg/L of butyric acid and 3,516 mg/L of acetic acid were observed. Regarding the metataxonomic profile, Clostridium genus was dramatically favored in the optimized condition (79.78%) when compared to the allochthonous inoculum (0.43%). It was possible to identify several genes related to H (i.e dehydrogenases) and volatile fatty acids (VFA) production and with cellulose degradation, especially some CAZymes from the classes Auxiliary Activities, Glycoside Hydrolases and Glycosyl Transferase. By means of differential gene expression it was observed that cellulose degradation and acetic acid production pathways were overabundant in samples from the optimized reactors, highlighting endo-β-1,4-glucanase/cellulose, endo-β-1,4-xylanase, β-glucosidase, β-mannosidase, cellulose β-1,4-cellobiosidase, cellobiohydrolase, and others, as main the functions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2021.112631DOI Listing

Publication Analysis

Top Keywords

allochthonous inoculum
16
citrus peel
8
peel waste
8
optimized conditions
8
lignocellulosic waste
8
conditions identified
8
acetic acid
8
cellulose degradation
8
allochthonous
5
production
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!