Docosahexaenoic acid ameliorates autoimmune inflammation by activating GPR120 signaling pathway in dendritic cells.

Int Immunopharmacol

Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; Department of Pathology & Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States. Electronic address:

Published: August 2021

Although the phenomenon that omega-3 polyunsaturated fatty acids (n-3 PUFAs) shows to have a beneficial effect in patients suffering from multiple sclerosis (MS) and other autoimmune diseases has been empirically well-documented, the molecular mechanisms that underline the anti-inflammatory effects of n-3 PUFAs are yet to be understood. In experimental autoimmune encephalomyelitis (EAE), a model for MS, we show that one of the underlying mechanisms by which dietary docosahexaenoic acid (DHA) exerts its anti-inflammatory effect is regulating the functional activities of dendritic cells (DCs). In DHA-treated EAE mice, DCs acquire a regulatory phenotype characterized by low expression of co-stimulatory molecules, decreased production of pro-inflammatory cytokines, and enhanced capability of regulatory T-cell induction. The effect of DHA on DCs is mediated by the lipid-sensing receptor, G protein-coupled receptor 120 (GPR120). A GPR120-specific small-molecule agonist could ameliorate the autoimmune inflammation by regulating DCs, while silencing GPR120 in DCs strongly increased the immunogenicity of DCs. Stimulation of GPR120 induces suppressor of cytokine signaling 3 (SOCS3) expression and down-regulates signal transducer and activator of transcription 3 (STAT3) phosphorylation, explaining the molecular mechanism for regulatory DC induction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.intimp.2021.107698DOI Listing

Publication Analysis

Top Keywords

docosahexaenoic acid
8
autoimmune inflammation
8
dendritic cells
8
n-3 pufas
8
dcs
6
acid ameliorates
4
autoimmune
4
ameliorates autoimmune
4
inflammation activating
4
gpr120
4

Similar Publications

Marine organisms, including shrimps, have gained research interest due to containing an abundance of bioactive lipid molecules.This study evaluated the composition and the in vitro biological activities of amphiphilic bioactive compounds from four different wild shrimp species: , , , and . Total lipid (TL) extracts were obtained from shrimp and separated into total amphiphilic (TAC) and total lipophilic (TLC) compounds.

View Article and Find Full Text PDF

Eicosapentaenoic Acid and Docosahexaenoic Acid as an Antimicrobial Agent in Orthopedics-An In Vitro Study About the Race for Surface.

Pathogens

January 2025

Research Laboratory for Biofilms and Implant Associated Infections (BIOFILM LAB), University Hospital for Orthopaedics and Traumatology, Medical University of Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria.

Background: The burden of prosthetic joint infection in combination with antibiotic-resistant bacterial strains is a rising dilemma for patients experiencing total joint replacements. Around 0.8-2% of patients experience prosthetic joint infections, while up to 21% of patients are considered fatal cases after 5 years.

View Article and Find Full Text PDF

Rumen Bacterial Community Responses to Three DHA Supplements: A Comparative In Vitro Study.

Animals (Basel)

January 2025

Department of Nutrition and Health, China Agricultural University, No. 17 Tsinghua East Road, Haidian District, Beijing 100083, China.

The aim of this study was to investigate the loss of docosahexaenoic acid (DHA) from three supplements (two powders and one oil) after digestion (rumen and gastrointestinal) and their effects on the number and composition of rumen bacteria, using an in vitro approach. The concentration of supplements has a significant impact on the DHA loss rate and algal oil exhibited the highest rate of loss, but bioaccessibility was not significantly different from the other supplements. 16S rRNA sequencing showed that three DHA supplements altered the bacterial composition of in vitro batch cultures inoculated with rumen microorganisms from cows, and caused changes in the relative abundance of important bacterial phyla, families, and genera.

View Article and Find Full Text PDF

Impact of Dietary-Forage-to-Concentrate Ratio on Podolian Young Bulls' Performance and Nutritional Properties of Meat.

Animals (Basel)

January 2025

Department of Agriculture, Food, Natural Resources and Engineering (DAFNE), University of Foggia, Via Napoli, 25-71121 Foggia, Italy.

Animal feeding has a great impact on the management of beef farms, also affecting the nutritional properties of the meat. Therefore, in this study, the following two forage-to-concentrate ratios were tested on twenty farmed Podolian young bulls: high forage-to-concentrate (HF:C) ratio of 65:35 vs. low forage-to-concentrate (LF:C) ratio of 45:55.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!