Urbanization is progressing rapidly. It can affect soils ecosystem services directly through land management and indirectly through changes in the socioeconomic environment, which eventually leads to an increase in emissions of greenhouse gases. Soil carbon (C) sequestration plays an important role in offsetting the anthropogenic C emissions. However, there is limited knowledge of how urbanization affects the soil C especially that in suburban. In this study, we studied changes in easily oxidizable organic C (EOC) and total organic C (TOC) of suburban soils (0-100 cm) in the rapid urbanising megacity Chengdu, China. The EOC stock and TOC stock decreased from the outer-suburb to the inner-suburb by 17.8-28.2% and 5.4-13.5%, respectively; particularly, the inner-suburb EOC decreased by 31.4-38.6% during the past 10 years. The quotient of EOC/TOC in the soil profile, reflecting the stability of soil C, declined from the outer-suburb (0.78) to the inner-suburb (0.20). Factors that influenced the EOC and TOC included the changes in economics (economic density, industrialization), farmland (cultivated area, farmland structure), urbanization (city size, population growth) and traffic flow. Among which, economic density growth was the primarily driver of the loss in TOC, explaining 31.6% of the variation in soil surface TOC and 16.0% of the variation in subsoil TOC; changes in farmland and urban expansion were the main factors contributing to the loss of subsoil EOC, with 40.4% explanatory ability. In addition, traffic flow also has contribution to the subsoil EOC loss. We concluded that the increasing soil C loss with decreasing distance from the city centre has a continuous contribution to C emission, and the C loss will persist until the suburbs are fully urbanized. The large losses of EOC and TOC caused by urbanization, and their contribution to global warming, necessitate their consideration in future appraisals of climate change and urban planning projects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.147209DOI Listing

Publication Analysis

Top Keywords

eoc toc
8
economic density
8
traffic flow
8
subsoil eoc
8
soil
7
eoc
7
toc
7
loss
6
urbanization
5
loss organic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!