A 3D cell culture approach for studying neuroinflammation.

J Neurosci Methods

Prion Cell Biology Unit, Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT, 59840, USA. Electronic address:

Published: July 2021

AI Article Synopsis

  • Neurodegenerative diseases are complex and influenced by the interactions between various brain cell types, necessitating the use of advanced 3D co-culture systems for study.
  • A new method was developed using murine neural stem cells to create a 3D ex-vivo model that incorporates microglia, allowing for more accurate modeling of brain tissue interactions.
  • The results showed that this 3D system maintains cell functionality and longevity, providing a more realistic environment for studying neuroinflammatory responses compared to traditional 2D cultures.

Article Abstract

Background: Neurodegenerative diseases are highly complex making them challenging to model in cell culture. All cell types of the brain have been implicated as exerting an effect on pathogenesis, and disease progression is likely influenced by the cross-talk between the different cell types. Sophisticated investigation of the cellular level consequences of cross-talk between different cells types requires three-dimensional (3D) co-culture systems.

New Method: Murine neural stem cells were differentiated into mixed-neuronal lineage populations in 3D culture. By seeding these differentiated cultures with microglia from adult brain, we have generated a 3D ex-vivo model of murine brain tissue populated with microglia.

Results: Monitoring the infiltration of GFP-expressing microglia into the 3D neuronal lineage cultures showed population throughout the tissue and assumption of ramified homeostatic morphology by the microglia. The co-cultures showed good longevity and were functionally responsive to external stimuli.

Comparison With Existing Methods: We have previously used 2-dimensional adhered cultures to model cell-cell interactions between microglia and neuronal lineage cells. While the microglia integrate well into these cultures and demonstrate inter-cellular cross-talk, it is known that adhered culture can change their activation state and therefore a 3D system better represents communication throughout a network of neuronal and support cells.

Conclusions: Our system offers a straight-forward and time effective way to model 3D mouse brain tissue that is responsive to external neuroinflammatory stimulus. It not only allows inter-cellular interactions to be studied in live tissue but additionally permits study of changes within any available mouse genotype.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8217318PMC
http://dx.doi.org/10.1016/j.jneumeth.2021.109201DOI Listing

Publication Analysis

Top Keywords

cell culture
8
cell types
8
brain tissue
8
microglia neuronal
8
neuronal lineage
8
responsive external
8
microglia
5
cell
4
culture approach
4
approach studying
4

Similar Publications

The rapid and reliable detection of pathogenic bacteria remains a significant challenge in clinical microbiology. Consequently, the demand for simple and rapid techniques, such as antimicrobial peptide (AMP)-based sensors, has recently increased as an alternative to traditional methods. Melittin, a broad-spectrum AMP, rapidly associates with the cell membranes of various gram-positive and gram-negative bacteria.

View Article and Find Full Text PDF

Background/objectives: Acute myeloid leukemia (AML) is an aggressive neoplasm. Although most patients respond to induction therapy, they commonly relapse due to recurrent disease in the bone marrow microenvironment (BMME). So, the disruption of the BMME, releasing tumor cells into the peripheral circulation, has therapeutic potential.

View Article and Find Full Text PDF

Global Literature Analysis of Tumor Organoid and Tumor-on-Chip Research.

Cancers (Basel)

January 2025

Hybrid Technology Hub, Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway.

: Tumor organoid and tumor-on-chip (ToC) platforms replicate aspects of the anatomical and physiological states of tumors. They, therefore, serve as models for investigating tumor microenvironments, metastasis, and immune interactions, especially for precision drug testing. To map the changing research diversity and focus in this field, we performed a quality-controlled text analysis of categorized academic publications and clinical studies.

View Article and Find Full Text PDF

Background: The physical activity of different groups of individuals results in the rearrangement of microbiota composition toward a symbiotic microbiota profile. This applies to both healthy and diseased individuals. Multiple myeloma (MM), one of the more common hematological malignancies, predominantly affects older adults.

View Article and Find Full Text PDF

Polyunsaturated fatty acids (PUFAs) are vital dietary elements that play a significant role in human nutrition. They are highly regarded for their positive contributions to overall health and well-being. Beyond the fact that they provide a substantial supply of energy to the body (a role that saturated fats can also perform), these unsaturated fatty acids and, especially, the essential ones are involved in cell membrane structure, blood pressure regulation, and coagulation; participate in the proper functioning of the immune system and assimilation of fat-soluble vitamins; influence the synthesis of pro- and anti-inflammatory substances; and protect the cardiovascular system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!