A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session9bqc1c8o5mue8cgf2qn07fs0khdndbth): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification of multiple substrate binding sites in SLC4 transporters in the outward-facing conformation: Insights into the transport mechanism. | LitMetric

Identification of multiple substrate binding sites in SLC4 transporters in the outward-facing conformation: Insights into the transport mechanism.

J Biol Chem

Department of Medicine, Division of Nephrology, David Geffen School of Medicine, University of California, Los Angeles, California, USA; Brain Research Institute, University of California, Los Angeles, California, USA. Electronic address:

Published: August 2021

AI Article Synopsis

  • Solute carrier family 4 (SLC4) transporters play a key role in transporting bicarbonate, chloride, and carbon dioxide, which are vital for regulating pH and maintaining ion balance in cells.
  • Recent studies on human anion exchanger 1 (hAE1) and human electrogenic sodium bicarbonate cotransporter 1 (hNBCe1) revealed their similar three-dimensional structures but differing transport modes—Cl/HCO exchange vs. Na-CO symport.
  • Using techniques like ligand competitive saturation mapping and molecular dynamics, researchers identified important substrate binding sites in both transporters, with specific mutations affecting their transport function, offering insights that could aid drug development for related diseases.

Article Abstract

Solute carrier family 4 (SLC4) transporters mediate the transmembrane transport of HCO, CO, and Cl necessary for pH regulation, transepithelial H/base transport, and ion homeostasis. Substrate transport with varying stoichiometry and specificity is achieved through an exchange mechanism and/or through coupling of the uptake of anionic substrates to typically co-transported Na. Recently solved outward-facing structures of two SLC4 members (human anion exchanger 1 [hAE1] and human electrogenic sodium bicarbonate cotransporter 1 [hNBCe1]) with different transport modes (Cl/HCO exchange versus Na-CO symport) revealed highly conserved three-dimensional organization of their transmembrane domains. However, the exact location of the ion binding sites and their protein-ion coordination motifs are still unclear. In the present work, we combined site identification by ligand competitive saturation mapping and extensive molecular dynamics sampling with functional mutagenesis studies which led to the identification of two substrate binding sites (entry and central) in the outward-facing states of hAE1 and hNBCe1. Mutation of residues in the identified binding sites led to impaired transport in both proteins. We also showed that R730 in hAE1 is crucial for anion binding in both entry and central sites, whereas in hNBCe1, a Na acts as an anchor for CO binding to the central site. Additionally, protonation of the central acidic residues (E681 in hAE1 and D754 in hNBCe1) alters the ion dynamics in the permeation cavity and may contribute to the transport mode differences in SLC4 proteins. These results provide a basis for understanding the functional differences between hAE1 and hNBCe1 and may facilitate potential drug development for diseases such as proximal and distal renal tubular acidosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8191340PMC
http://dx.doi.org/10.1016/j.jbc.2021.100724DOI Listing

Publication Analysis

Top Keywords

binding sites
16
substrate binding
8
slc4 transporters
8
entry central
8
hae1 hnbce1
8
transport
7
binding
6
sites
5
identification multiple
4
multiple substrate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!