A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Impact of Electrostatic Interaction on Bulk Morphology in Efficient Donor-Acceptor Photovoltaic Blends. | LitMetric

Impact of Electrostatic Interaction on Bulk Morphology in Efficient Donor-Acceptor Photovoltaic Blends.

Angew Chem Int Ed Engl

Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.

Published: July 2021

Bulk heterojunctions comprising mixed donor (D) and acceptor (A) materials have proven to be the most efficient device structures for organic photovoltaic (OPV) cells. The bulk morphology of such cells plays a key role in charge generation, recombination, and transport, thus determining the device performance. Although numerous studies have discussed the morphology-performance relationship of these cells, the method of designing OPV materials with the desired morphology remains unclear. Herein, guided by molecular electrostatic potential distributions, we have established a connection between the chemical structure and bulk morphology. We show that the molecular orientation at the D-A interface and the domain purity in the blend can be effectively modulated by modifying the functional groups. Enhancing the D-A interaction is beneficial for charge generation. However, the resulting low domain purity and increased charge transfer ratio in its hybridization with the local excitation states lead to severe charge recombination. Fine-tuning the bulk morphology can give balanced charge generation and recombination, which is crucial for further boosting the efficiency of the OPV cells.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202102622DOI Listing

Publication Analysis

Top Keywords

bulk morphology
16
charge generation
12
opv cells
8
generation recombination
8
domain purity
8
bulk
5
morphology
5
charge
5
impact electrostatic
4
electrostatic interaction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!