Constructed wetland is a common measure for water purification and biodiversity conservation, but the mechanism of carbon storage is still unclear. Here, we researched the content and composition of soil organic carbon (SOC) and the influencing factors in surface sediment in surface flow constructed wetlands (SFCW) and subsurface flow constructed wetlands (SSFCW). Results showed that the content and storage of SOC in SSFCW were significantly higher than those in SFCW. However, the higher proportion of light fraction organic carbon (LFOC) and lower proportion of heavy fraction organic carbon (HFOC) in SSFCW indicated that SSFCW had less stable organic carbon storage than SFCW. The composition of SOC in the two types of constructed wetlands was mainly affected by total nitrogen, which suggesting carbon-nitrogen coupling in constructed wetlands. The abundant microbial species in SSFCW and their positive correlation with SOC could explain the higher carbon storage in SSFCW than in SFCW. In addition, plant biomass was the principle factor limiting LFOC proportion in SFCW, while it was moisture content in SSFCW. The study has important implications for understanding and management of ecological function of carbon sequestration in contrasted wetlands, and also provides a special perspective to understand the carbon storage mechanism in wetlands.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-021-14134-8DOI Listing

Publication Analysis

Top Keywords

organic carbon
20
constructed wetlands
20
carbon storage
16
carbon
9
content composition
8
influencing factors
8
types constructed
8
flow constructed
8
fraction organic
8
wetlands
7

Similar Publications

The fate and degradation of organic matter in aquatic systems is a vital link in nutrient cycling and sedimentation processes influenced by exogenous and endogenous factors, such as inputs from upstream sources, sediment suspension, and the decomposition of aquatic organisms. The interplay of organic carbon, microbes, and environmental factors shapes the distribution and degradation of organic matter. Characterizing the source distribution of sedimentary organic matter in aquatic systems using novel proxies can unravel new insights into the mechanisms that control its dispersal, preservation and fate, which is essential to understanding the global carbon and nitrogen cycles.

View Article and Find Full Text PDF

Zn(TFSI)-Mediated Ring-Opening Polymerization for Electrolyte Engineering Toward Stable Aqueous Zinc Metal Batteries.

Nanomicro Lett

January 2025

Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai, 200433, People's Republic of China.

Practical Zn metal batteries have been hindered by several challenges, including Zn dendrite growth, undesirable side reactions, and unstable electrode/electrolyte interface. These issues are particularly more serious in low-concentration electrolytes. Herein, we design a Zn salt-mediated electrolyte with in situ ring-opening polymerization of the small molecule organic solvent.

View Article and Find Full Text PDF

Constructing fecal-derived electrocatalysts for CO upcycling: simultaneously tackling waste and carbon emissions.

Nanoscale

January 2025

School of Chemistry and Chemical Engineering, School of the Environment, State Key Laboratory of Pollution Control & Resource Reuse, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.

The escalating global fecal waste and rising CO levels present dual significant environmental challenges, further intensified by urbanization. Traditional fecal waste management methods are insufficient, particularly in addressing the related health risks and environmental threats. This study explores the synthesis of biochar from pig manure as a carbon substrate to disperse and stabilize Cu nanoparticles, resulting in the formation of an efficient Cu-NB-2000 electrocatalyst for electrocatalytic CO reduction (ECR).

View Article and Find Full Text PDF

Electrocatalysis: From Planar Surfaces to Nanostructured Interfaces.

Chem Rev

January 2025

Department of Chemical & Biomolecular Engineering, University of California, Irvine, California 92697, United States.

The reactions critical for the energy transition center on the chemistry of hydrogen, oxygen, carbon, and the heterogeneous catalyst surfaces that make up electrochemical energy conversion systems. Together, the surface-adsorbate interactions constitute the electrochemical interphase and define reaction kinetics of many clean energy technologies. Practical devices introduce high levels of complexity where surface roughness, structure, composition, and morphology combine with electrolyte, pH, diffusion, and system level limitations to challenge our ability to deconvolute underlying phenomena.

View Article and Find Full Text PDF

The synthesis of perfluoroalkylated fullerenes (PFAFs) holds significant importance due to their enhanced molecular stability, increased lipophilicity, and high electron affinity. Herein, we report a copper-catalyzed multicomponent reaction conducted under aerobic conditions, which enables the production of highly soluble PFAFs with half-wave reduction potentials similar to those of C. Furthermore, the challenges posed by C-F coupling in carbon signal assignment were addressed through fluorine-decoupled carbon spectroscopy, facilitating precise structural characterization of the perfluoroalkyl moieties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!