Objectives: Long-term cannabis use has been associated with the appearance of psychotic symptoms and schizophrenia-like cognitive impairments; however these studies may be confounded by concomitant use of tobacco by cannabis users. We aimed to determine if previously observed cannabis-associated deficits in sensory gating would be seen in cannabis users with no history of tobacco use, as evidenced by changes in the P50, N100, and P200 event-related potentials. A secondary objective of this study was to examine the effects of acute nicotine administration on cannabis users with no tobacco use history.
Methods: Three components (P50, N100, P200) of the mid-latency auditory-evoked response (MLAER) were elicited by a paired-stimulus paradigm in 43 healthy, non-tobacco smoking male volunteers between the ages of 18-30. Cannabis users (CU, n = 20) were administered nicotine (6 mg) and placebo gum within a randomized, double-blind design. Non-cannabis users (NU, n = 23) did not receive nicotine.
Results: Between-group sensory gating effects were only observed for the N100, with CUs exhibiting a smaller N100 to S of the paired stimulus paradigm, in addition to reduced dN100 (indicating poorer gating). Results revealed no significant sensory gating differences with acute administration of nicotine compared to placebo cannabis conditions.
Conclusions: These findings suggest a relationship between gating impairment and cannabis use; however, acute nicotine administration nicotine does not appear to impact sensory gating function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00213-021-05843-6 | DOI Listing |
Brain Sci
December 2024
Neuroscience Center Zurich, University and ETH Zurich, CH-8091 Zurich, Switzerland.
Background/objectives: The auditory middle-latency responses (AMLRs) assess central sensory processing beyond the brainstem and serve as a measure of sensory gating. They have clinical relevance in the diagnosis of neurological conditions. In this study, magnitude and habituation of the AMLRs were tested for sensitivity and specificity in classifying dizzy patients with vestibular migraine (VM) and post-concussive syndrome.
View Article and Find Full Text PDFPLoS Biol
January 2025
Department of Neurology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany.
Pain is closely linked to alpha oscillations (8 < 13 Hz) which are thought to represent a supra-modal, top-down mediated gating mechanism that shapes sensory processing. Consequently, alpha oscillations might also shape the cerebral processing of nociceptive input and eventually the perception of pain. To test this mechanistic hypothesis, we designed a sham-controlled and double-blind electroencephalography (EEG)-based neurofeedback study.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Modelling of Cognitive Processes, Berlin Institute of Technology, Berlin 10587, Germany.
Neuronal processing of external sensory input is shaped by internally generated top-down information. In the neocortex, top-down projections primarily target layer 1, which contains NDNF (neuron-derived neurotrophic factor)-expressing interneurons and the dendrites of pyramidal cells. Here, we investigate the hypothesis that NDNF interneurons shape cortical computations in an unconventional, layer-specific way, by exerting presynaptic inhibition on synapses in layer 1 while leaving synapses in deeper layers unaffected.
View Article and Find Full Text PDFJ Gen Physiol
March 2025
Institute for Neurophysiology, Uniklinik RWTH Aachen University, Aachen, Germany.
Voltage-gated sodium channels (VGSCs) in the peripheral nervous system shape action potentials (APs) and thereby support the detection of sensory stimuli. Most of the nine mammalian VGSC subtypes are expressed in nociceptors, but predominantly, three are linked to several human pain syndromes: while Nav1.7 is suggested to be a (sub-)threshold channel, Nav1.
View Article and Find Full Text PDFActa Neurobiol Exp (Wars)
January 2025
Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland.
The article provides a review of the sensory processing (SP) phenomenon, its origins, theoretical models, and neurophysiological foundations. Initiated by A. Jean Ayres' research on sensory integration in the 1960s and 70s, this field has evolved, leading to the development of concepts such as Winnie Dunn's four quadrant model and Miller's ecological model of sensory modulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!