This study determines the effect of the configuration of the magnetic field on the movement of gas bubbles that evolve from platinum electrodes. Oxygen and hydrogen bubbles respectively evolve from the surface of the anode and cathode and behave differently in the presence of a magnetic field due to their paramagnetic and diamagnetic characteristics. A magnetic field perpendicular to the surface of the horizontal electrode causes the bubbles to revolve. Oxygen and hydrogen bubbles revolve in opposite directions to create a swirling flow and spread the bubbles between the electrodes, which increases conductivity and the effectiveness of electrolysis. For vertical electrodes under the influence of a parallel magnetic field, a horizontal Lorentz force effectively detaches the bubbles and increases the conductivity and the effectiveness of electrolysis. However, if the layout of the electrodes and magnetic field results in upward or downward Lorentz forces that counter the buoyancy force, a sluggish flow in the duct inhibits the movement of the bubbles and decreases the conductivity and the charging performance. The results in this study determine the optimal layout for an electrode and a magnetic field to increase the conductivity and the effectiveness of water electrolysis, which is applicable to various fields including energy conversion, biotechnology, and magnetohydrodynamic thruster used in seawater.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8087803 | PMC |
http://dx.doi.org/10.1038/s41598-021-87947-9 | DOI Listing |
Dalton Trans
January 2025
Department of Chemistry, Graduate School of Natural Science and Technology, Shimane University, 1060, Nishikawatsu, Matsue, Shimane, 690-8504, Japan.
Paddlewheel-type diruthenium(II,II) complexes are paramagnetic with two unpaired electrons ( = 1) and can be utilized as versatile building blocks for higher-order structures, such as supramolecular complexes, coordination polymers, and metal-organic frameworks, although they are generally highly air-sensitive. In this study, we developed an air-stable paddlewheel-type diruthenium(II,II) complex with two electron-withdrawing 1,8-naphthyridine-2-carboxylate (npc) ligands, [Ru(μ-npc)(OCMe)] (1). The two acetate ligands in 1 can be replaced by other carboxylate ligands; the solvothermal reactions of 1 with benzoic acid (HOCPh) yields the heteroleptic [Ru(μ-npc)(OCPh)] (2), whereas its reaction with 1,8-naphthyridine-2-carboxylic acid (Hnpc) produces the homoleptic [Ru(μ-npc)(η-npc)] (3).
View Article and Find Full Text PDFDiagn Interv Radiol
January 2025
Erzincan Binali Yıldırım University Faculty of Medicine, Department of Radiology, Erzincan, Türkiye.
Radiography is a field of medicine inherently intertwined with technology. The dependency on technology is very high for obtaining images in ultrasound (US), computed tomography (CT), and magnetic resonance imaging (MRI). Although the reduction in radiation dose is not applicable in US and MRI, advancements in technology have made it possible in CT, with ongoing studies aimed at further optimization.
View Article and Find Full Text PDFCurr Neuropharmacol
January 2025
2-nd Department of Radiology, Medical University of Gdansk, Gdansk, Poland.
The dorsolateral prefrontal cortex (dlPFC) is increasingly targeted by various noninvasive transcranial magnetic stimulation or transcranial current stimulation protocols in a range of neuropsychiatric and other brain disorders. The rationale for this therapeutic modulation remains elusive. A model is proposed, and up-to-date evidence is discussed, suggesting that the dlPFC is a high-level cortical centre where uncertainty management, movement facilitation, and cardiovascular control processes are intertwined and integrated to deliver optimal behavioural responses in particular environmental or emotional contexts.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Rare Earths, University of Science and Technology of China, Hefei 230026, China.
Achieving ultrahigh permeance and superoleophobicity is crucial for membrane application. Here, we demonstrated that a poly(ionic liquid)/PES hydrogel membrane can achieve dual goals. The high polarity of the ionic liquids induces the water molecules on the membrane surface to be arranged more ordered, as verified by molecular dynamics (MD) simulation and advanced femtosecond sum frequency generation (SFG) vibrational spectroscopy.
View Article and Find Full Text PDFTheranostics
January 2025
Departments of Radiology, Washington University in St. Louis, MO 63110, USA.
Cancer remains a leading cause of mortality, with aggressive, treatment-resistant tumors posing significant challenges. Current combination therapies and imaging approaches often fail due to disparate pharmacokinetics and difficulties correlating drug delivery with therapeutic response. In this study, we developed radionuclide-activatable theranostic nanoparticles (NPs) comprising folate receptor-targeted bimetallic organo-nanoparticles (Gd-Ti-FA-TA NPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!