Leptin gene-targeted editing in ob/ob mouse adipose tissue based on the CRISPR/Cas9 system.

J Genet Genomics

Department of Endocrinology, Institute of Geriatric Medicine, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pharmacology, Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China. Electronic address:

Published: February 2021

Gene therapy has become the most effective treatment for monogenic diseases. Congenital LEPTIN deficiency is a rare autosomal recessive monogenic obesity syndrome caused by mutations in the Leptin gene. Ob/ob mouse is a monogenic obesity model, which carries a homozygous point mutation of C to T in Exon 2 of the Leptin gene. Here, we attempted to edit the mutated Leptin gene in ob/ob mice preadipocytes and inguinal adipose tissues using CRISPR/Cas9 to correct the C to T mutation and restore the production of LEPTIN protein by adipocytes. The edited preadipocytes exhibit a correction of 5.5% of Leptin alleles and produce normal LEPTIN protein when differentiated into mature adipocytes. The ob/ob mice display correction of 1.67% of Leptin alleles, which is sufficient to restore the production and physiological functions of LEPTIN protein, such as suppressing appetite and alleviating insulin resistance. Our study suggests CRISPR/Cas9-mediated in situ genome editing as a feasible therapeutic strategy for human monogenic diseases, and paves the way for further research on efficient delivery system in potential future clinical application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jgg.2021.01.008DOI Listing

Publication Analysis

Top Keywords

leptin gene
12
leptin protein
12
leptin
10
ob/ob mouse
8
monogenic diseases
8
monogenic obesity
8
gene ob/ob
8
ob/ob mice
8
restore production
8
leptin alleles
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!