Myocardial strain analysis using cardiac magnetic resonance in patients with calpainopathy.

Orphanet J Rare Dis

Department of Internal Medicine and Cardiology, Herzzentrum Dresden Universitätsklinik, Technische Universität Dresden, Dresden, Germany.

Published: April 2021

Background: Limb-girdle muscular dystrophy (LGMD) is a genetically and clinically heterogeneous group of rare muscular dystrophies. Subtype 2A (LGMD2A) also known as "calpainopathy" is an inherited autosomal recessive gene defect. Cardiac dysfunction is common in several forms of LGMD. Cardiac involvement in LGMD2A, however, is not clear. The aim of this study was to perform cardiac magnetic resonance (CMR)-based strain analysis in LGMD2A patients, as this is a diagnostic parameter of subclinical cardiac involvement and a powerful independent predictor of mortality. We conducted the largest prospective cardiac magnetic resonance study to date, including 11 genetically verified LGMD2A patients and 11 age- and sex-matched control subjects and performed CMR-based strain analysis of the left and right ventricles.

Results: Left and right global longitudinal strain (GLS) were not significantly different between the two groups and within normal reference ranges (left ventricle: control - 21.8 (5.1) % vs. patients - 22.3 (3.2) %, p = 0.38; right ventricle: control - 26.3 (7.2) % vs. patients - 26.8 (5.8) %, p = 0.85). Also, global circumferential and radial strains did not significantly differ between the two groups (p = 0.95 and p = 0.86, respectively). LGMD2A patients did not show relevant amounts of late gadolinium enhancement (LGE) or malignant ventricular arrhythmias.

Conclusions: No evidence of even subtle cardiac dysfunction is evident form CMR-based strain analysis in LGMD2A patients. Malignant ventricular arrhythmias were not detected. Thus, in case of non-pathological initial echocardiographic and electrocardiographic examination, a less frequent or even no cardiac follow-up may be acceptable in these patients. However, if there are signs and symptoms that suggest an underlying cardiac condition (e.g. palpitations, angina, shortness of breath), this approach needs to be individualized to account for the unknown.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8086059PMC
http://dx.doi.org/10.1186/s13023-021-01826-0DOI Listing

Publication Analysis

Top Keywords

strain analysis
16
lgmd2a patients
16
cardiac magnetic
12
magnetic resonance
12
cmr-based strain
12
cardiac
9
patients
8
cardiac dysfunction
8
cardiac involvement
8
analysis lgmd2a
8

Similar Publications

Triterpene esters from Uncaria rhynchophylla hooks as potent HIV-1 protease inhibitors and their molecular docking study.

Sci Rep

December 2024

Department of Pharmacognosy, College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Korea.

Despite significant advancements with combination anti-retroviral agents, eradicating human immunodeficiency virus (HIV) remains a challenge due to adverse effects, adherence issues, and emerging viral resistance to existing therapies. This underscores the urgent need for safer, more effective drugs to combat resistant strains and advance acquired immunodeficiency syndrome (AIDS) therapeutics. Eight triterpene esters (1-8) were identified from Uncaria rhynchophylla hooks.

View Article and Find Full Text PDF

Ensuring everyone enjoys healthy lifestyles and well-being at all ages, Progress has been made in increasing access to clean water and sanitation facilities and reducing the spread of epidemics and diseases. The synthesis of nano-particles (NPs) by using microalgae is a new nanobiotechnology due to the use of the biomolecular (corona) of microalgae as a capping and reducing agent for NP creation. This investigation explores the capacity of a distinct indigenous microalgal strain to synthesize silver nano-particles (AgNPs), as well as its effectiveness against multi-drug resistant (MDR) bacteria and its ability to degrade Azo dye (Methyl Red) in wastewater.

View Article and Find Full Text PDF

Epidemic Zika virus strains from the Asian lineage induce an attenuated fetal brain pathogenicity.

Nat Commun

December 2024

KU Leuven Department of Microbiology, Immunology and Transplantation, Virology, Antiviral Drug & Vaccine Research Group, Rega Institute for Medical Research, Leuven, Belgium.

The 2015-2016 Zika virus (ZIKV) outbreak in the Americas revealed the ability of ZIKV from the Asian lineage to cause birth defects, generically called congenital Zika syndrome (CZS). Notwithstanding the long circulation history of Asian ZIKV, no ZIKV-associated CZS cases were reported prior to the outbreaks in French Polynesia (2013) and Brazil (2015). Whether the sudden emergence of CZS resulted from an evolutionary event of Asian ZIKV has remained unclear.

View Article and Find Full Text PDF

Mechanisms of recalcitrant fucoidan breakdown in marine Planctomycetota.

Nat Commun

December 2024

AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Sukarrieta, Spain.

Marine brown algae produce the highly recalcitrant polysaccharide fucoidan, contributing to long-term oceanic carbon storage and climate regulation. Fucoidan is degraded by specialized heterotrophic bacteria, which promote ecosystem function and global carbon turnover using largely uncharacterized mechanisms. Here, we isolate and study two Planctomycetota strains from the microbiome associated with the alga Fucus spiralis, which grow efficiently on chemically diverse fucoidans.

View Article and Find Full Text PDF

The mechanisms underlying the impact of probiotic supplementation on health remain largely elusive. While previous studies primarily focus on the discovery of novel bioactive bacteria and alterations in the microbiome environment to explain potential probiotic effects, our research delves into the role of living Lactiplantibacillus (formerly known as Lactobacillus) and their conditioned media, highlighting that only the former, not dead bacteria, enhance the healthspan of Caenorhabditis elegans (C. elegans).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!