Carbon aerogel from forestry biomass as a peroxymonosulfate activator for organic contaminants degradation.

J Hazard Mater

Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, PR China. Electronic address:

Published: July 2021

The carbon catalyst has been widely used as a peroxymonosulfate (PMS) activator to degrade organic contaminants. The biomass carbon aerogel (CA) derived from poplar powder was synthesized in this study. CA with three-dimensional structure exhibited an excellent degradation performance of PMS activation for different types of organic contaminants including bisphenol A (BPA), rhodamine 6 G, phenol, and p-chlorophenol with the removal efficiencies up to 91%, 100%, 100%, and 60% within 60 min, respectively. It was found that singlet oxygen (O) dominated the non-radical pathway worked for BPA removal in CA/PMS system. The possible mechanism for PMS activation was discussed. A portion of O was produced through the transformation of superoxide radical (O) in CA/PMS system. Electronic impedance spectroscopy (EIS) proved that the hierarchical structure of CA contributed to the electron transfer process for PMS activation. The ketonic/carbonyl groups (C˭O) on the surface of CA could serve as a possible active site to facilitate the generation of O. In addition, CA showed superior degradation performance in actual water bodies and reusability with high-temperature regeneration treatment. This study developed an efficient and environmentally benign catalyst for water remediation of organic pollutants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2021.125438DOI Listing

Publication Analysis

Top Keywords

organic contaminants
12
pms activation
12
carbon aerogel
8
degradation performance
8
ca/pms system
8
aerogel forestry
4
forestry biomass
4
biomass peroxymonosulfate
4
peroxymonosulfate activator
4
organic
4

Similar Publications

Integration of ratiometric, ultrafast, sensitive detection as well as rapid and efficient removal of tetracycline based on a novel Zn (II) functionalized magnetic covalent organic framework.

Anal Chim Acta

March 2025

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China. Electronic address:

Background: Based on the low volatility and refractory nature of Tetracycline (TC), excessive use leads to its continuous accumulation in water environments, posing serious risks to the ecological environment and human health. Although a very limited number of nanomaterials capable of simultaneously detecting and removing TC have been fabricated, they generally exist issues associated with a single detection signal ("on" or "off") or low adsorption rates with low adsorption capacities. As a result, it is crucial to develop a reliable technique to achieve ratiometric detection as well as rapid and efficient removal of TC.

View Article and Find Full Text PDF

Multifunctional quaternary ammonium-modified TEMPO-oxidized cellulose nanofibers and MIL-100 with encapsulated laccase for efficient removal of anionic arund cationic dyes in wastewater.

Int J Biol Macromol

January 2025

Department of Cell and Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, P.O. Box 19839-69411, Tehran, Iran. Electronic address:

The increasing prevalence of micropollutants like cationic and anionic dyes in wastewater creates an influential environmental challenge, mainly due to their toxic effects and persistence. Current methods often lack the efficiency and versatility to cope with a wide variety of contaminants. This study explores the modification of TEMPO-oxidized cellulose nanofibers (TOCNF) using (3-chloro-2-hydroxypropyl) trimethylammonium chloride (CHPTAC) to enhance their cationic properties.

View Article and Find Full Text PDF

Estimating wastewater emissions and environmental levels of typical organic contaminants based on regionalized modelling.

Environ Res

January 2025

The Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, P.R. China.

Organic contaminants (OCs) are released into the environment through effluent discharges from wastewater treatment plants (WWTP), posing risks to environment health. However, emissions from various source, particularly large-scale investigations across different industries, remain poorly understood. Based on both sampling and statistical data, this study estimates the emissions of 10 OCs, including perfluorooctane acid (PFOA), perfluorooctane sulfonate (PFOS), 4-nonylphenol (4-NP), 4-tert-octylphenol (4-t-OP), dibutyl phthalate (DBP), di-iso-butyl phthalate (DIBP), dimethyl phthalate (DMP), butyl benzyl phthalate (BBP), di(2-ethylhexyl) phthalate (DEHP), and bisphenol A (BPA), from the effluents of 160 factories across 8 industries, 541 municipal wastewater treatment plants (MWWTPs), and 8 waste treatment plants (WTPs) in the upper Yangtze River Basin.

View Article and Find Full Text PDF

Polybrominated diphenyl ethers (PBDEs) are a class of persistent organic pollutants that may pose risks to human health and environmental biota, including soil microbial communities. These risks are further affected by a multitude of factors, including environmental conditions encountered in real-world settings. A comprehensive understanding of how PBDEs transform and microbial communities respond to the exposure under varying environmental conditions is paramount for assessing the ecological risks or identifying potential degraders.

View Article and Find Full Text PDF

This study evaluated a novel ex situ passive sampling biomimetic extraction (BE) method to estimate toxic potency in sediments. Gas chromatography with flame ionization detection (GC-FID) analysis of polydimethylsiloxane fibers equilibrated with field sediments was used to quantify bioavailable polyaromatic hydrocarbons (PAHs) and other unresolved, site-specific contaminant mixtures. This method is biomimetic because contaminants partition to the fiber based on hydrophobicity and abundance, and GC-FID quantification accounts for all constituents absorbed to the fiber that may contribute to toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!