The potential of naturally occurring substances as a source of biomedical materials is well-recognised and is being increasingly exploited. Silk fibroin membranes derived fromsilk cocoons exemplify this, for example as substrata for the growth of ocular cells with the aim of generating biomaterial-cell constructs for tissue engineering. This study investigated the transport properties of selected silk fibroin membranes under conditions that allowed equilibrium hydration of the membranes to be maintained. The behaviour of natural fibroin membranes was compared with fibroin membranes that have been chemically modified with poly(ethylene glycol). The permeation of the smaller hydrated sodium ion was higher than that of the hydrated calcium ion for all three ethanol treated membranes investigated. The PEG and HRP-modified C membrane, which had the highest water content at 59.6 ± 1.5% exhibited the highest permeation of the three membranes at 95.7 ± 2.8 × 10cmscompared with 17.9 ± 0.9 × 10cmsand 8.7 ± 1.7 × 10cmsfor membranes A and B respectively for the NaCl permeant. Poly(ethylene glycol) was used to increase permeability while exploiting the crosslinking capabilities of horseradish peroxidase to increase the compressive strength of the membrane. Importantly, we have established that the permeation behaviour of water-soluble permeants with hydrated radii in the sub-nanometer range is analogous to that of conventional hydrogel polymers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/2057-1976/abfd82 | DOI Listing |
Int J Biol Macromol
January 2025
Institute of Stomatology & Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, Fujian 350002, China. Electronic address:
Alveolar bone defects caused by inflammation or trauma jeopardize patients' oral functions. Guided bone regeneration (GBR) is widely used in repairing periodontal tissue, with barrier membranes play a crucial role in preserving the bone regeneration space. In this study, an injectable dual-crosslinked hydrogel was developed to improve the existing barrier membranes in flexibility and functionality.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
August 2024
Xiangya Stomatological Hospital and Xiangya School of Stomatology, Central South University; Hunan Engineering Research Center for Oral Digital Intelligence and Personalized Medicine; Hunan 3D Printing Engineering Research Center of Oral Care; WANG Songling Academician Workstation for Oral-maxilofacial and Regenerative Medicine, Central South University, Changsha 410078.
Objectives: Drug-loaded mucoadhesive silk fibroin (SF) microneedle patch can overcome the limitations of low bioavailability and significant pain associated with traditional treatment methods, such as topical application or injection of triamcinolone for oral submucous fibrosis (OSF). However, these systems release the drug too quickly, failing to meet the clinical requirements. This study aims to construct a mucoadhesive SF microneedle patch pre-assembled with silk fibroin nanospheres (SFN) and explore its ability to sustain the release of triamcinolone in the treatment of OSF.
View Article and Find Full Text PDFGels
November 2024
Laboratory of Nanochemistry, Department of Biophysics and Radiation Biology, Semmelweis University, Tűzoltó Street 37-47, H-1094 Budapest, Hungary.
Hydrogel membranes can offer a cutting-edge solution for abdominal hernia treatment. By combining favorable mechanical parameters, tissue integration, and the potential for targeted drug delivery, hydrogels are a promising alternative therapeutic option. The current review examines the application of hydrogel materials composed of synthetic and biological polymers, such as polyethylene glycol (PEG), polyvinyl alcohol (PVA), gelatine, and silk fibroin, in the context of hernia repair.
View Article and Find Full Text PDFSmall
December 2024
General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, China.
Future structural materials is not only be lightweight, strong, and tough, but also capable of integrating functions like sensing, adaptation, self-healing, deformation, and recovery as needed. Although bio-inspired materials are well developed, directly integrating microelectronic patterns into nacre-mimetic structures remains challenging, limiting the widespread application of electronic biomimetic materials. Here, an in situ freeze-drying method is reported for the successful preparation of porous silk fibroin materials that can achieve dry bonding.
View Article and Find Full Text PDFBiomed Mater
December 2024
Food Science and Technology Program, Department of Life Sciences, Faculty of Science and Technology, BNU-HKBU United International College, Zhuhai, Guangdong 519087, People's Republic of China.
As a lethal skin cancer, melanoma is highly aggressive and metastatic with high recurrence rates and the common therapy is surgical resection followed by chemotherapy. To minimize the side effects of chemotherapeutic drugs and prevent tumor recurrence, localized therapy is a more suitable treatment method. Here, a fully biodegradable silk fibroin (SF) membrane loaded with the therapeutic drug doxorubicin (Dox) is fabricated for potential localized chemotherapy of melanoma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!