AI Article Synopsis

  • Rock-salt lead selenide (PbSe) nanocrystals can be organized into large-scale square superlattices by assembling them at a liquid-air interface and then connecting them through oriented attachment.
  • Scanning Tunneling Spectroscopy (STS) reveals insights into the electronic properties of these superlattices, allowing for the analysis of the band gap and electronic states after controlled annealing.
  • The study finds that while the connections between the nanocrystals enhance electronic coupling, the overall electronic structure is still heavily affected by disorder and variability in the system.

Article Abstract

Rock-salt lead selenide nanocrystals can be used as building blocks for large scale square superlattices via two-dimensional assembly of nanocrystals at a liquid-air interface followed by oriented attachment. Here we report Scanning Tunneling Spectroscopy measurements of the local density of states of an atomically coherent superlattice with square geometry made from PbSe nanocrystals. Controlled annealing of the sample permits the imaging of a clean structure and to reproducibly probe the band gap and the valence hole and conduction electron states. The measured band gap and peak positions are compared to the results of optical spectroscopy and atomistic tight-binding calculations of the square superlattice band structure. In spite of the crystalline connections between nanocrystals that induce significant electronic couplings, the electronic structure of the superlattices remains very strongly influenced by the effects of disorder and variability.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/abfd57DOI Listing

Publication Analysis

Top Keywords

atomically coherent
8
scanning tunneling
8
tunneling spectroscopy
8
band gap
8
electronic properties
4
properties atomically
4
square
4
coherent square
4
square pbse
4
pbse nanocrystal
4

Similar Publications

Modeling Optical Coherence Tomography (OCT) images is crucial for numerous image processing applications and aids ophthalmologists in the early detection of macular abnormalities. Sparse representation-based models, particularly dictionary learning (DL), play a pivotal role in image modeling. Traditional DL methods often transform higher-order tensors into vectors and then aggregate them into a matrix, which overlooks the inherent multi-dimensional structure of the data.

View Article and Find Full Text PDF

Computational microscopy with coherent diffractive imaging and ptychography.

Nature

January 2025

Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA, USA.

Microscopy and crystallography are two essential experimental methodologies for advancing modern science. They complement one another, with microscopy typically relying on lenses to image the local structures of samples, and crystallography using diffraction to determine the global atomic structure of crystals. Over the past two decades, computational microscopy, encompassing coherent diffractive imaging (CDI) and ptychography, has advanced rapidly, unifying microscopy and crystallography to overcome their limitations.

View Article and Find Full Text PDF

Macroscopic coherence in quantum fluids allows the observation of interference effects in their wavefunctions, and enables applications such as superconducting quantum interference devices based on Josephson tunneling. The Josephson effect manifests in both fermionic and bosonic systems, and has been well studied in superfluid helium and atomic Bose-Einstein condensates. In exciton-polariton condensates-that offer a path to integrated semiconductor platforms-creating weak links in ring geometries has so far remained challenging.

View Article and Find Full Text PDF
Article Synopsis
  • Efficient readout of information is crucial for quantum simulation, yet standard measurements typically focus on just one observable at a time.
  • This research introduces an atomic beam splitter for controlled outcoupling, allowing simultaneous measurement of both number imbalance and relative phase in two coupled 1D Bose gases, acting as a simulator for sine-Gordon field theory.
  • The method demonstrates quantum limitations through number squeezing, tracks Josephson oscillation dynamics, and permits atom extraction while preserving coherent dynamics, paving the way for studying quantum properties and multitime correlation functions in larger systems.
View Article and Find Full Text PDF

Charge transport in materials has an impact on a wide range of devices based on semiconductor, battery, or superconductor technology. Charge transport in sliding charge density waves (CDW) differs from all others in that the atomic lattice is directly involved in the transport process. To obtain an overall picture of the structural changes associated to the collective transport, the large coherent x-ray beam generated by an x-ray free-electron laser (XFEL) source was used.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!