Winter warm-up frequency and the degree of temperature fluctuations affect survival outcomes of spotted-wing drosophila winter morphotypes.

J Insect Physiol

Department of Entomology, Cornell AgriTech, Geneva, NY 14424, USA. Electronic address:

Published: September 2021

Among overwintering Drosophila suzukii, discrete environmental changes in temperature and photoperiod induce a suite of biochemical changes conferring cold tolerance. However, little is known regarding how temperature fluctuations, which can influence metabolic and cellular repair activity, affect survival outcomes in this species. For that reason, we designed three experiments to test the effects of intermittent warm-up periods and the degree of temperature fluctuation on winter-morphotype (WM) D. suzukii survival. We found that at 5 °C, a temperature sufficient to induce reproductive diapause, but warm enough to allow foraging, increasing warm-up frequency (warmed to 25 °C at various interval schedules) was associated with decreased survival. In contrast, when the nightly low temperature was 0 °C, daily fluctuations that warmed the environment to temperatures above freezing (5, or 15 °C) appeared beneficial and resulted in improved survival compared to flies held at 0 °C during day and night. When we next evaluated cold tolerance using a 24-hour stress test assay (-5 °C), we found that again, thermal fluctuations improved survival compared to static freezing conditions. However, we also found that WM D. suzukii exposed to freezing temperatures during acclimation were less cold tolerant, regardless of the thermal fluctuation schedule, indicating that there may be tradeoffs between adequate acclimation temperature, which is required to induce cold tolerance, and the ensuing effects of incidental chill injury. Moving forward, these data, which account for the nuanced interactions between the thermal environment and in the internal physiology of D. suzukii, may help refine seasonal populations models, which aim to forecast pest pressure based on conditions the previous winter.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jinsphys.2021.104246DOI Listing

Publication Analysis

Top Keywords

cold tolerance
12
warm-up frequency
8
degree temperature
8
temperature fluctuations
8
affect survival
8
survival outcomes
8
improved survival
8
survival compared
8
temperature
7
survival
6

Similar Publications

Cold stress in winter is one of the most severe abiotic stresses on plant growth and flourishing, and the selection of cold tolerant genotypes is an important strategy to ensure the safety of plant growth and development. Cyclocarya paliurus, a diclinous and versatile tree species originally in subtropical regions, has been introduced and cultivated in the warm temperate zone of China to meet the increasing market demand for its leaf yield. However, information regarding its cold tolerance remains limited.

View Article and Find Full Text PDF

Abiotic stresses, notably cold stress, significantly influence various aspects of plant development and reproduction. Various approaches have been proposed to counteract the adverse impacts of cold stress on plant productivity. The unique properties of nanoparticles contribute to an enhanced tolerance of plants to challenging conditions.

View Article and Find Full Text PDF

Resinacein S ameliorates the obesity in mice via activating the brown adipose tissue.

Pak J Pharm Sci

January 2025

Department of Endocrinology, Gongli Hospital of Shanghai Pudong New Area, School of Gongli Hospital Medical Technology, University of Shanghai for Science and Technology, Shanghai, China.

Brown adipose tissue (BAT) is an ideal target organ for obesity treatment. Resinacein S is extracted from Ganoderma lucidum and can elevate Uncoupling protein 1 (UCP1) in cells, but its related effects at the animal level are not clear. The mice were fed with high-fat diet to construct obesity models and treated with Resinacein S.

View Article and Find Full Text PDF

Ethylene is a signalling factor that plays a key role in the response of plants to abiotic stresses, such as cold stress. Recent studies have shown that the exogenous application of 1-aminocyclopropane-1-carboxylate (ACC), an ethylene promoter, affects plant cold tolerance. The cold-responsive specific gene DREB plays a crucial role in enhancing cold tolerance in plants by activating several cold-responsive (COR) genes.

View Article and Find Full Text PDF
Article Synopsis
  • Straw degradation is slow in cold environments, but a consortium of bacteria and fungi, named LHWA, was developed to enhance this process.
  • Under 4 °C, this consortium achieved a 55.52% straw weight loss in liquid fermentation after 30 days and 58.36% in solid fermentation after 60 days.
  • Transcriptomic analysis indicated that B. cereus, part of the consortium, enhances cold resistance by modifying cell membrane fluidity and increasing cold stress response proteins.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!