Antibody recruiting molecules (ARMs) represent an important class of "proximity-inducing" chemical tools with therapeutic potential. ARMs function by simultaneously binding to a hapten-specific serum antibody (Ab) (e.g., anti-dinitrophenyl (DNP)) and a cancer cell surface protein, enforcing their proximity. ARM anticancer efficacy depends on the formation of ARM:Ab complexes on the cancer cell surface, which activate immune cell recognition and elimination of the cancer cell. Problematically, ARM function in human patients may be limited by conditions that drive the dissociation of ARM:Ab complexes, namely, intrinsically low binding affinity and/or low concentrations of anti-hapten antibodies in human serum. To address this potential limitation, we previously developed a covalent ARM (cARM) chemical tool that eliminates the ARM:antibody equilibrium through a covalent linkage. In the current study, we set out to determine to what extent maximizing the stability of ARM:antibody complexes via cARMs enhances target immune recognition. We observe cARMs significantly increase target immune recognition relative to ARMs across a range of therapeutically relevant antibody concentrations. These results demonstrate that ARM therapeutic function can be dramatically enhanced by increasing the stability of ARM:antibody complexes localized on cancer cells. Our findings suggest that a) high titres/concentrations of target antibody in human serum are not neccessary and b) saturative antibody recruitment to cancer cells not sufficient, to achieve maximal ARM therapeutic function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biochem.1c00127 | DOI Listing |
Plants (Basel)
January 2025
School of Bioengineering, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024, China.
Plant immunity is largely governed by nucleotide-binding leucine-rich repeat receptor (NLR). Here, we examine the molecular activation and inhibition mechanisms of the wheat CC-type NLR , a previously proposed candidate for the resistance gene. Though recent studies have identified as the true gene, Yr10 remains an important NLR in understanding NLR-mediated immunity in wheat.
View Article and Find Full Text PDFInsects
January 2025
College of Environmental and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia.
Innate immunity is critical for insects to adjust to complicated environments. Studying the insect immune system can aid in identifying novel insecticide targets and provide insights for developing novel pest control strategies. Insects recognize environmental pathogens through pattern recognition receptors, thus activating the innate immune system to eliminate pathogens.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Departments of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita-gun, Takamatsu 761-0793, Kagawa Prefecture, Japan.
Galectins are widely distributed throughout the animal kingdom, from marine sponges to mammals. Galectins are a family of soluble lectins that specifically recognize β-galactoside-containing glycans and are categorized into three subgroups based on the number and function of their carbohydrate recognition domains (CRDs). The interaction of galectins with specific ligands mediates a wide range of biological activities, depending on the cell type, tissue context, expression levels of individual galectin, and receptor involvement.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
With the increasing recognition of the role of immunomodulation and oxidative stress in various diseases, designing peptides with both immunomodulatory and antioxidant activities has emerged as a promising therapeutic strategy. In this study, a hybridization design was applied as a powerful method to obtain multifunctional peptides. A total of 40 peptides with potential immunomodulatory and antioxidant activities were designed and screened.
View Article and Find Full Text PDFMedicina (Kaunas)
January 2025
Department of Medical Oncology, Faculty of Medicine, Medipol University, Istanbul 34810, Turkey.
: Immune checkpoint inhibitors (ICIs) have revolutionized cancer therapy, but their use is associated with a spectrum of immune-related adverse events (irAEs), including endocrine disorders. This study aims to investigate the incidence, timing, treatment modalities, and impact of ICI-related endocrine side effects in cancer patients. : This retrospective study analyzed 139 cancer patients treated with ICIs between 2016 and 2022.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!