Aims: We investigated the interaction between peroxisome proliferator-activated receptor gamma (PPAR-γ) Pro12Ala polymorphism and healthy eating index (HEI), Dietary Quality Index-International (DQI-I), and dietary phytochemical index (DPI) on cardiovascular disease (CVD) risk factors in patients with type 2 diabetes mellitus (T2DM).
Methods: This cross-sectional study was conducted on 393 diabetic patients. PPAR-γ Pro12Ala was genotyped by the PCR-RFLP method. Biochemical markers including total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein (HDL), triglyceride (TG), superoxide dismutase (SOD), C-reactive protein (CRP), total antioxidant capacity (TAC), pentraxin-3 (PTX3), isoprostaneF2α (PGF2α). Interleukin 18 (IL18), leptin, and ghrelin were measured by standard protocol. Food-frequency questionnaires (FFQ) were used for dietary indices (DQI-I, DPI, HEI) calculation.
Results: Homozygous carriers of the rs1801282 C allele showed higher leptin compared G allele carriers (P = .015). The rs1801282-DQI-I interactions were significant on waist circumference (WC) (P = .019). Thus, C-allele carriers in the higher tertile of DQI-I had higher WC compared with GG homozygous. Further, an interaction was observed between PPAR rs1801282 polymorphism and DQI-I on serum IL-18 level (P = .032). Besides, a significant rs1801282-DPI interaction was shown on HDL concentration (P = .041), G allele carriers who were in the highest tertile of DPI, had lower HDL. Moreover, there were significant rs1801282-HEI interactions on serum leptin (P = .021). Individuals with (CC, CG) genotypes in the higher tertile of HEI, had lower leptin concentration.
Conclusion: Higher dietary indices (DQI-I, DPI, HEI) may affect the relationship between PPAR-γ Pro12Ala polymorphism and WC, ghrelin, leptin, HDL, and IL-18 concentration in patients with T2DM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ijcp.14307 | DOI Listing |
BMC Nephrol
November 2024
Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana, Kazakhstan.
Background: Globally, diabetic kidney disease (DKD) has become the leading cause of end-stage renal disease, imposing substantial social and economic costs. This meta-analysis was designed to provide valuable insights into gene-disease interactions by investigating the potential association between lipid metabolism gene polymorphisms and the risk of DKD.
Methods: An electronic literature search was conducted on MEDLINE Complete, Web of Science, Embase, and PubMed.
Genes (Basel)
October 2024
Endocrine and Metabolic Unit, Nutrition, Metabolic & Cardiovascular Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam 40170, Selangor, Malaysia.
Background: Obesity is a pressing public health issue in Malaysia, involving not only excess weight but also complex metabolic and physiological changes. Addressing these complexities requires comprehensive strategies, including understanding the population-level differences in obesity susceptibility. This review aims to compile the genetic variants studied among Malaysians and emphasize their implications for obesity risk.
View Article and Find Full Text PDFBiomedicines
June 2024
Department of Orthopedics and Traumatology, Independent Public Clinical Hospital No. 1, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland.
Osteoporosis is a multifactorial systemic skeletal disease that is characterized by a low bone mineral density (BMD) and the microarchitectural deterioration of bone tissue, leading to bone fragility. The search for new genes that may play an important role in the regulation of bone mass and the development of osteoporosis is ongoing. Recently, it was found that altering the activity of the endothelin-1-converting enzyme encoded by the gene may affect bone mineral density (BMD).
View Article and Find Full Text PDFBiomolecules
December 2023
Facultad de Medicina y Ciencias Biomédicas, Universidad Autónoma de Chihuahua, Campus II. Circuito Universitario S/N, Chihuahua 31109, CP, Mexico.
Unlabelled: Glucose and lipid metabolism regulation by the peroxisome proliferator-activated receptors (PPARs) has been extensively reported. However, the role of their polymorphisms remains unclear.
Objective: To determine the relation between PPAR-γ2 rs1801282 (Pro12Ala) and PPAR-β/δ rs2016520 (+294T/C) polymorphisms and metabolic biomarkers in adults with type 2 diabetes (T2D).
Bioinformation
September 2023
Department of Physiology, Government Medical College, Rajanna Sircilla, Telangana - 505 301, India.
Peroxisome Proliferator-Activated Receptor gamma 2 (PPARγ2) belongs to nuclear receptor superfamily and plays a role in adipocyte differentiation and inflammation. Evidences suggest that inflammatory processes hold key to insulin resistance and PPARγ2 has also been implicated. PPARγ2 exhibits gene polymorphism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!