Human aging is linked to many prevalent diseases. The aging process is highly influenced by genetic factors. Hence, it is important to identify human aging-related genes. We focus on supervised prediction of such genes. Gene expression-based methods for this purpose study genes in isolation from each other. While protein-protein interaction (PPI) network-based methods for this purpose account for interactions between genes' protein products, current PPI network data are context-unspecific, spanning different biological conditions. Instead, here, we focus on an aging-specific subnetwork of the entire PPI network, obtained by integrating aging-specific gene expression data and PPI network data. The potential of such data integration has been recognized but mostly in the context of cancer. So, we are the first to propose a supervised learning framework for predicting aging-related genes from an aging-specific PPI subnetwork. In a systematic and comprehensive evaluation, we find that in many of the evaluation tests: (i) using an aging-specific subnetwork indeed yields more accurate aging-related gene predictions than using the entire network, and (ii) predictive methods from our framework that have not previously been used for supervised prediction of aging-related genes outperform existing prominent methods for the same purpose. These results justify the need for our framework.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TCBB.2021.3076961DOI Listing

Publication Analysis

Top Keywords

aging-related genes
16
supervised prediction
12
methods purpose
12
ppi network
12
prediction aging-related
8
network data
8
aging-specific subnetwork
8
genes
6
aging-related
5
ppi
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!