Assessing the Association of Mitochondrial Function and Inflammasome Activation in Murine Macrophages Exposed to Select Mitotoxic Tri-Organotin Compounds.

Environ Health Perspect

Molecular Toxicology Branch, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Research Triangle Park, North Carolina, USA.

Published: April 2021

AI Article Synopsis

  • Mitochondrial damage from environmental toxicants can trigger inflammation through the activation of the NLRP3 inflammasome, which is linked to various inflammatory disorders.
  • The study aimed to assess whether mitochondrial toxicants cause this inflammasome activation, using specific organotins to test their effects on macrophage cells.
  • Results showed that exposure to the toxicants led to inflammasome formation and impaired mitochondrial function, alongside changes in gene expression and signaling pathways associated with inflammation and apoptosis.

Article Abstract

Background: Mitochondrial function is implicated as a target of environmental toxicants and found in disease or injury models, contributing to acute and chronic inflammation. One mechanism by which mitochondrial damage can propagate inflammation is via activation of the nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family, pyrin domain-containing receptor (NLRP)3 inflammasome, a protein complex that processes mature interleukin . plays an important role in the innate immune response and dysregulation is associated with autoinflammatory disorders.

Objective: The objective was to evaluate whether mitochondrial toxicants recruit inflammasome activation and processing.

Method: Murine macrophages (RAW 264.7) exposed to tri-organotins (triethyltin bromide (TETBr), trimethyltin hydroxide (TMTOH), triphenyltin hydroxide (TPTOH), bis(tributyltin)oxide) [Bis(TBT)Ox] were examined for pro-inflammatory cytokine induction. TMTOH and TETBr were examined in RAW 264.7 and bone marrow-derived macrophages for mitochondrial bioenergetics, reactive oxygen species (ROS) production, and inflammasome activation via visualization of aggregate formation, caspase-1 flow cytometry, enzyme-linked immunosorbent assay and Western blots, and microRNA (miRNA) and mRNA arrays.

Results: TETBr and TMTOH induced inflammasome aggregate formation and release in lipopolysaccharide (LPS)-primed macrophages. Mitochondrial bioenergetics and mitochondrial ROS were suppressed. and induction with LPS or challenge was diminished. Differential miRNA and mRNA profiles were observed. Lower targeted cyclic adenosine monophosphate (cAMP)-mediated and AMP-activated protein kinase signaling pathways; higher , , and targeted Wnt beta-catenin signaling, retinoic acid receptor activation, apoptosis, signal transducer and activator of transcription 3, IL-22, IL-12, and IL-10 signaling. Functional enrichment analysis identified apoptosis and cell survival canonical pathways.

Conclusion: Select mitotoxic tri-organotins disrupted murine macrophage transcriptional response to LPS, yet triggered inflammasome activation. The differential response pattern suggested unique functional changes in the inflammatory response that may translate to suppressed host defense or prolong inflammation. We posit a framework to examine immune cell effects of environmental mitotoxic compounds for adverse health outcomes. https://doi.org/10.1289/EHP8314.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8086801PMC
http://dx.doi.org/10.1289/EHP8314DOI Listing

Publication Analysis

Top Keywords

inflammasome activation
16
mitochondrial function
8
murine macrophages
8
select mitotoxic
8
raw 2647
8
macrophages mitochondrial
8
mitochondrial bioenergetics
8
aggregate formation
8
mirna mrna
8
mitochondrial
7

Similar Publications

Inflammasomes are defense complexes that utilize cytokines and immunogenic cell death (ICD) to stimulate the immune system against pathogens. Inspired by their dual action, we present cytokine-armed pyroptosis as a strategy for boosting immune response against diverse types of tumors. To induce pyroptosis, we utilize designed tightly regulated gasdermin D variants comprising different pore-forming capabilities and diverse modes of activation, representing a toolbox of ICD inducers.

View Article and Find Full Text PDF

Multifaceted Immunomodulatory Nanocomplexes Target Neutrophilic-ROS Inflammation in Acute Lung Injury.

Adv Sci (Weinh)

December 2024

Department of Critical Care Medicine and Emergency, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China.

The sepsis-induced acute lung injury (ALI) still represents one of the leading causes of death in critically ill patients, underscoring the need for novel therapies. Excessive activation of immune cells and damage of reactive oxygen species (ROS) are the main factors that exacerbate lung injury. Here, the multifaceted immunomodulatory nanocomplexes targeting the proinflammatory neutrophilic activation and ROS damage are established.

View Article and Find Full Text PDF

Long-term use of naproxen can lead to serious side effects. Inspired by the biological activity of cinnamic acid, a series of cinnamic acid derivatives containing naproxen were designed, synthesized and explored their anti-inflammatory activities and mechanism in vitro. Our results indicated that all of naproxen derivatives showed more significant inhibition against lipopolysaccharide (LPS)-induced nitric oxide (NO) production and had lower degree of cytotoxicity than that of naproxen.

View Article and Find Full Text PDF

Carbonaceous cores serve as surrogates for environmental particulate matter inducing vascular endothelial inflammation via inflammasome activation.

J Hazard Mater

December 2024

Key laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health, Southeast University, Nanjing, Jiangsu 210009, China. Electronic address:

Ambient particulate matter (PM) exposure is a known risk factor for cardiovascular diseases. Epidemiological studies have shown the association between PM exposure and vascular complications, including vasculitis, embolism, hypertension, stroke, and atherosclerosis. However, the exact mechanisms underlying its vascular toxicity, especially in relation to short-term exposures, remain incompletely understood.

View Article and Find Full Text PDF

Advances in research on the impact and mechanisms of pathogenic microorganism infections on pyroptosis.

Front Microbiol

December 2024

Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China.

Pyroptosis, also known as inflammatory necrosis, is a form of programmed cell death characterized by the activation of gasdermin proteins, leading to the formation of pores in the cell membrane, continuous cell swelling, and eventual membrane rupture. This process results in the release of intracellular contents, including pro-inflammatory cytokines like IL-1β and IL-18, which subsequently trigger a robust inflammatory response. This process is a crucial component of the body's innate immune response and plays a significant role in combating infections.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!