The synthesis of tricyclic 5,5-benzannulated spiroketal scaffolds was accomplished from 2'-hydroxyacetophenones and -dibromoalkenes involving a one-pot domino strategy. The hitherto unknown transformation afforded the tricyclic 5,5-benzannulated spiroketals as single diastereomers in high yields with a broad substrate scope.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.orglett.1c01109 | DOI Listing |
Gut
January 2025
Leeds Institute of Medical Research at St. James's, University of Leeds, Leeds, UK
Background: Low-dose amitriptyline, a tricyclic antidepressant (TCA), was superior to placebo for irritable bowel syndrome (IBS) in the AmitripTyline at Low-dose ANd Titrated for Irritable bowel syndrome as Second-line treatment (ATLANTIS) trial.
Objective: To perform post hoc analyses of ATLANTIS for predictors of response to, and tolerability of, a TCA.
Design: ATLANTIS randomised 463 adults with IBS to amitriptyline (232) or placebo (231).
Molecules
January 2025
ICGM, Univ Montpellier, CNRS, ENSCM (Institut Charles Gerhardt Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique, École Nationale Supérieure de Chimie de Montpellier), 1919 Route de Mende, CEDEX 05, 34293 Montpellier, France.
A first -type tricyclic 8-8-8 (three fused-8-membered ring) laddersiloxane functionalized with four azido groups was successfully synthesized through efficient and highly selective hydrosilylation and nucleophilic substitution, achieving an excellent overall yield. The starting material, a tetravinyl-substituted 8-8-8 laddersiloxane, was prepared via a straightforward and scalable method. The obtained azido-functionalized ladder compound, fully characterized, constitutes a versatile building block for hybrid materials.
View Article and Find Full Text PDFMolecules
January 2025
School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan.
Oxazole, a versatile and significant heteroarene, serves as a bridge between synthetic organic chemistry and applications in the medicinal, pharmaceutical, and industrial fields. Polycyclic aromatic compounds with amino groups substituted at the 2-position of an oxazole, such as 2-aminonaphthoxazoles, are expected to be functional probes, but their synthetic methods are extremely limited. Herein, we describe electrochemical reactions of 3-amino-2-naphthol or 3-amino-2-anthracenol and isothiocyanates in DMSO, using a graphite electrode as an anode and a platinum electrode as a cathode in the presence of potassium iodide (KI), which afford -arylnaphtho- and -arylanthra[2,3-]oxazol-2-amines via cyclodesulfurization.
View Article and Find Full Text PDFMedicina (Kaunas)
January 2025
Neurology Department, Cooper University Hospital, Camden, NJ 08103, USA.
: Myoclonus is already associated with a wide variety of drugs and systemic conditions. As new components are discovered, more drugs are suspected of causing this disabling abnormal involuntary movement. This systematic review aims to assess the medications associated with drug-induced myoclonus (DIM).
View Article and Find Full Text PDFJ Org Chem
January 2025
School of Medicine, Shanghai University, 99 Shangda Road, BaoShan District, Shanghai 200444, China.
Uncommon diterpenoids with diverse frameworks, including one unexpected iodinated oxa-6/6/6/6-tetracyclic diterpene () and its monobrominated 6/6/6-tricyclic analogue () and one novel isodolastane-type diterpene featuring an unusual aromatic 5/7/6-tricyclic ring system () as well as a related known dolastane-type diterpenoid (), were isolated from the South China Sea sponge . Their structures, including absolute configurations, were established by extensive spectroscopic data analysis, X-ray diffraction analysis, and quantum mechanical-nuclear magnetic resonance and time-dependent density functional theory/electronic circular dichroism calculations. A plausible biosynthetic pathway of new compounds - was proposed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!