Surface Functionalization of TiCT MXene Nanosheets with Catechols: Implication for Colloidal Processing.

Langmuir

Materials and Manufacturing Directorate, Air Force Research Laboratory, 2941 Hobson Way, WPAFB, Ohio 45433, United States.

Published: May 2021

Precise tailoring of two-dimensional nanosheets with organic molecules is critical to passivate the surface and control the reactivity, which is essential for a wide range of applications. Herein, we introduce catechols to functionalize exfoliated MXenes (TiCT) in a colloidal suspension. Catechols react spontaneously with TiCT surfaces, where binding is initiated from a charge-transfer complex as confirmed by density functional theory (DFT) and UV-vis. TiCT sheet interlayer spacing is increased by catechol functionalization, as confirmed by X-ray diffraction (XRD), while Raman and atomic force microscopy-infrared spectroscopy (AFM-IR) measurements indicate binding of catechols at the TiCT surface occurs through metal-oxygen bonds, which is supported by DFT calculations. Finally, we demonstrate immobilization of a fluorescent dye on the surface of MXene. Our results establish a strategy for tailoring MXene surfaces via aqueous functionalization with catechols, whereby colloidal stability can be modified and further functionality can be introduced, which could provide excellent anchoring points to grow polymer brushes and tune specific properties.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.0c03078DOI Listing

Publication Analysis

Top Keywords

tict
5
catechols
5
surface
4
surface functionalization
4
functionalization tict
4
tict mxene
4
mxene nanosheets
4
nanosheets catechols
4
catechols implication
4
implication colloidal
4

Similar Publications

Application of a near-infrared viscosity-responsive fluorescent probe for lysosomal targeting in fatty liver mice.

Bioorg Chem

February 2025

Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, College of Pharmacy, Qinghai Minzu University, Xining 810007 Qinghai, China; State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China. Electronic address:

Viscosity is a fundamental property in biological systems, influencing organelle function and molecular diffusion. Abnormal viscosity is associated with diseases such as metabolic disorders, neurodegeneration, and cancer. Lysosomes, central to cellular degradation and recycling, are sensitive to viscosity changes, which can disrupt enzymatic activity and cellular homeostasis.

View Article and Find Full Text PDF

Lysosome-targeted dual-locked NIR fluorescent probe for visualization of HS and viscosity in drug-induced liver injury and tumor models.

Anal Chim Acta

February 2025

Department of Radiology, Changhai Hospital, Naval Medical University, Changhai Road 168, Shanghai 200433, China. Electronic address:

Background: Lysosomes, as an indispensable subcellular organelle have numerous physiological functions closely associated with HS and viscosity, and accurate assessment of HS/viscosity fluctuations in lysosomes is essential for gaining a comprehensive understanding of lysosome-related physiological activities and pathological processes. The previous single-response fluorescent probes for either HS or viscosity alone have the potential to generate "false positive" signals in a complex biological environment. In contrast, dual-locked probes can simultaneously respond to multiple targets simultaneously, which could effectively eliminate this defect.

View Article and Find Full Text PDF

Supramolecular Control of the Photoisomerization of a Coumarin-Based Photoswitch.

ACS Omega

December 2024

Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111 Budapest, Hungary.

The complex formation of the cationic stilbene-type photoswitch CP with the anionic macrocycles carboxylato-pillar[5]arene (WP5) and carboxylato-pillar[6]arene (WP6) has been investigated in aqueous solution by optical spectroscopic, NMR and isothermal calorimetric experiments and theoretical calculations. Subsequently, the photoisomerization reactions of the supramolecular complexes formed have been studied. CP consists of a 7-diethylamino-coumarin fluorophore and an -methylpyridinium unit, which are connected via an ethene bridge.

View Article and Find Full Text PDF

Excited-state intramolecular proton transfer (ESIPT) reactions are one of the fundamental energy transformation reactions in catalysis and biological process. The combining ESIPT with the twisted intramolecular charge transfer (TICT) brings the richness of optical, photoelectronic performances to certain functional compounds. Delineating the mechanism of ESIPT + TICT reactions and further understanding why a specific functional group dominates are fundamentally crucial for the design and application of the functionally photoelectric materials.

View Article and Find Full Text PDF

Newly synthesized naphthalene-based twisted intramolecular charge transfer (TICT) molecules show 8.5- and 2.6-fold increases in fluorescence intensity upon binding with protein aggregates in comparison with the fluorescence enhancement for thioflavin T (ThT).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!