An extremophile survives massive DNA damage by efficiently mending hundreds of double strand breaks through homology-dependent DNA repair pathways. Although DNA repair proteins that contribute to its impressive DNA repair capacity are fairly known, interactions among them or with proteins related to other relevant pathways remain unexplored. Here, we report cross-linking of the interactomes of key DNA repair proteins DdrA, DdrB, RecA, and Ssb (baits) in cells recovering from gamma irradiation. The protein-protein interactions were systematically investigated through co-immunoprecipitation experiments coupled to mass spectrometry. From a total of 399 proteins co-eluted with the baits, we recovered interactions among diverse biological pathways such as DNA repair, transcription, translation, chromosome partitioning, cell division, antioxidation, protein folding/turnover, metabolism, cell wall architecture, membrane transporters, and uncharacterized proteins. Among these, about 80 proteins were relevant to the DNA damage resistance of the organism based on integration of data on inducible expression following DNA damage, radiation sensitive phenotype of deletion mutant, etc. Further, we cloned ORFs of 23 interactors in heterologous and expressed corresponding proteins with N-terminal His-tag, which were used for pull-down assays. A total of 95 interactions were assayed, in which we confirmed 25 previously unknown binary interactions between the proteins associated with radiation resistance, and 2 known interactions between DdrB and Ssb or DR_1245. Among these, five interactions were positive even under non-stress conditions. The confirmed interactions cover a wide range of biological processes such as DNA repair, negative regulation of cell division, chromosome partitioning, membrane anchorage, etc., and their functional relevance is discussed from the perspective of DNA repair. Overall, the study substantially advances our understanding on the cross-talk between different homology-dependent DNA repair pathways and other relevant biological processes that essentially contribute to the extraordinary DNA damage repair capability of . The data sets generated and analyzed in this study have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD021822.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jproteome.1c00078DOI Listing

Publication Analysis

Top Keywords

dna repair
32
dna damage
16
dna
12
repair
10
proteins
9
double strand
8
homology-dependent dna
8
repair pathways
8
pathways dna
8
repair proteins
8

Similar Publications

Background: Radiotherapy is the primary treatment modality for most head and neck cancers (HNCs). Despite the addition of chemotherapy to radiotherapy to enhance its tumoricidal effects, almost a third of HNC patients suffer from locoregional relapses. Salvage therapy options for such recurrences are limited and often suboptimal, partly owing to divergent tumor and microenvironmental factors underpinning radioresistance.

View Article and Find Full Text PDF

Synergistic effect of repurposed mitomycin C in combination with antibiotics against Aeromonas infection: In vitro and in vivo studies.

J Microbiol Immunol Infect

December 2024

Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Oncology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan. Electronic address:

Background: Aeromonas infections pose a significant threat associated with high mortality rates. This study investigates the potential of mitomycin C (MMC), an anticancer drug, as a novel antimicrobial agent against Aeromonas infections.

Methods: We evaluated the minimum inhibitory concentrations (MICs) of MMC and antibiotics against clinical Aeromonas isolates using broth microdilution.

View Article and Find Full Text PDF

HDAC and MEK inhibition synergistically suppresses HOXC6 and enhances PD-1 blockade efficacy in BRAF-mutant microsatellite stable colorectal cancer.

J Immunother Cancer

January 2025

Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, Beijing, China

Background: B-Raf proto-oncogene, serine/threonine kinase (BRAF)-mutant microsatellite stable (MSS) colorectal cancer (CRC) constitutes a distinct CRC subgroup, traditionally perceived as minimally responsive to standard therapies. Recent clinical attempts, such as BRAF inhibitors (BRAFi) monotherapy and combining BRAFi with other inhibitors, have yielded unsatisfactory efficacy. This study aims to identify a novel therapeutic strategy for this challenging subgroup.

View Article and Find Full Text PDF

3D printed Aloe barbadensis loaded alginate-gelatin hydrogel for wound healing and scar reduction: In vitro and in vivo study.

Int J Biol Macromol

January 2025

Department of Stem Cell and Regenerative Medicine and Medical Biotechnology, Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to be University), Kolhapur 416006, MS, India. Electronic address:

Wounds are one of the most critical clinical issues in plastic surgery repair and restoration. Conventional wound dressing materials cannot absorb enough wound exudates and shield the site from microbial infection. Also, despite their healing prowess, bioactive molecules from medicinal plants are less bioavailable at the wound sites.

View Article and Find Full Text PDF

The combination of polystyrene microplastics and di (2-ethylhexyl) phthalate promotes the conjugative transfer of antibiotic resistance genes between bacteria.

Ecotoxicol Environ Saf

January 2025

MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China. Electronic address:

Plastic pollution has become a common phenomenon. The process of plastic degradation is accompanied by the release of microplastics and plasticizers. However, the coexistence of microplastics and plasticizers on the transfer of antibiotic resistance genes (ARGs) has not been reported until now.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!