Human 8-oxoguanine DNA glycosylase (hOGG1) can initiate base excision repair of genomic 8-oxoguanine (8-oxoG), and it can locate and remove damaged 8-oxoG through extrusion and excision. Sensitive detection of hOGG1 is critical for clinical diagnosis. Herein, we develop a simple mix-and-read assay for the sensitive detection of DNA glycosylase using multiple cyclic enzymatic repairing amplification. The hOGG1 can excise the 8-oxoG base of the DNA substrate to produce an apurinic/apyrimidinic (AP) site, and then, the AP site can be cleaved by apurinic/apyrimidic endonuclease 1 (APE1), producing the substrate fragment with a free 3'-OH terminus. Subsequently, the substrate fragment can initiate cyclic enzymatic repairing amplification, generating two triggers. The resultant two triggers can function as the primers to induce three cyclic enzymatic repairing amplification, respectively, producing more and more triggers. We experimentally verify the occurrence of each cyclic enzymatic repairing amplification and uracil DNA glycosylase (UDG)-mediated exponential amplification. The amplification products can be simply detected using SYBR Green II as the fluorescent dye. This mix-and-read assay is very simple and rapid (within 40 min) without the requirement of any extra primers and modification/separation steps. This method can sensitively measure hOGG1 with a detection limit of 2.97 × 10 U/μL, and it can be applied for the screening of inhibitors and the monitoring of cellular hOGG1 activity at the single-cell level, providing an adaptive and flexible tool for clinical diagnosis and drug discovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.1c01111 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!