Suspensions of soft particles transition from a viscous fluid to a soft material upon increases in phase volume. The criteria defining the transition to this jammed state are difficult to define due to the porous and deformable nature of soft particles. Here, we characterise the rheology of aqueous suspensions of industrially relevant non-colloidal, polydisperse, frictional agarose microgels and evaluate shear and viscoelastic behaviour across a range of phase volumes from the dilute regime to the highly concentrated regime. In order to model the viscoelastic response of suspensions without free fitting parameters, the random close packing volume fraction (φrcp) and the particle modulus are determined, respectively, from particle size distribution measurements and direct measurements of reduced elastic modulus of individual particles (Erp) using Atomic Force Microscopy. It is found that at φrcp, previously shown to correspond to divergence of the viscosity, also corresponds to the suspension transition from a viscous to viscoelastic fluid. However, the transition to a jammed solid-like state (φj) occurs at phase volumes exceeding this value (i.e. φj > φrcp). The suspension modulus and its sudden growth at φj are well-predicted by the Evans and Lips model that incorporates the Erp of the hydrogel particles. This rheological behaviour showing a dual transition is reminiscent of two families of systems: (i) colloidal suspensions and (ii) frictional-adhesive non-colloidal suspensions. However, it does not strictly follow either case. We propose that the width of the transition region is dictated by frictional contact, particle size distribution and particle modulus, and plan to further probe this in future work.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0sm01624a | DOI Listing |
J Transl Med
January 2025
Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy.
Background: HER2-targeted therapies have revolutionized the treatment of HER2-positive breast cancer patients, leading to significant improvements in tumor response rates and survival. However, resistance and incomplete response remain considerable challenges. Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition is a novel therapeutic strategy for the management of dyslipidemia by enhancing the clearance of low-density lipoprotein cholesterol receptors, however recent evidence also shows links between PCSK9 and cancer cells.
View Article and Find Full Text PDFNat Commun
January 2025
School of Emergent Soft Matter, South China University of Technology, Guangzhou, China.
Radioactive molecular iodine (I) is a critical volatile pollutant generated in nuclear energy applications, necessitating sensors that rapidly and selectively detect low concentrations of I vapor to protect human health and the environment. In this study, we design and prepare a three-component sensing material comprising reduced graphene oxide (rGO) as the substrate, silver iodide (AgI) particles as active sites, and polystyrene sulfonate as an additive. The AgI particles enable reversible adsorption and conversion of I molecules into polyiodides, inducing substantial charge density variation in rGO.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Materials Science & Engineering, Iowa State University, Ames, Iowa 50011, United States.
Janus particles (JPs), initially introduced as soft matter, have evolved into a distinctive class of materials that set them apart from traditional surfactants, dispersants, and block copolymers. This mini-review examines the similarities and differences between JPs and their molecular counterparts to elucidate the unique properties of JPs. Key studies on the assembly behavior of JPs in bulk phases and at interfaces are reviewed, highlighting their unique ability to form diverse, complex structures.
View Article and Find Full Text PDFAcc Mater Res
January 2025
School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30322, United States.
Increasing demand for high-purity fine chemicals and a drive for process intensification of large-scale separations have driven significant work on the development of highly engineered porous materials with promise for sorption-based separations. While sorptive separations in porous materials offer energy-efficient alternatives to longstanding thermal-based methods, the particulate nature of many of these sorbents has sometimes limited their large-scale deployment in high-throughput applications such as gas separations, for which the necessary high feed flow rates and gas velocities accrue prohibitive operational costs. These processability limitations have been historically addressed through powder shaping methods aimed at the fabrication of structured sorbent contactors based on pellets, beads or monoliths, commonly obtained as extrudates.
View Article and Find Full Text PDFLangmuir
January 2025
School of Chemistry, Key Centre for Polymers and Colloids, The University of Sydney, Sydney, New South Wales 2006, Australia.
Polymer Janus nanoparticles with one hard cross-linked polystyrene lobe and one soft film-forming poly(methyl methacrylate--butyl acrylate) lobe were synthesized by reversible addition-fragmentation chain transfer (RAFT)-mediated emulsion polymerization. The Janus nanoparticles adsorbed to oil/water and air/water interfaces, where the soft lobes coalesced, forming films of thickness between 25 and 250 nm; droplets of silicone oil could be stably encapsulated in polymer in this way. When prepared by mechanical mixing without additives, capsules of diameter 5-500 μm could be prepared, and with additives and application of heat, capsules of diameter around 5 μm were achieved, even with highly viscous silicone oil (20,000 cSt).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!