The mechanical stimuli generated as a finger interrogates the physical and chemical features of an object form the basis of fine touch. Haptic devices, which are used to control touch, primarily focus on recreating physical features, but the chemical aspects of fine touch may be harnessed to create richer tactile interfaces and reveal fundamental aspects of tactile perception. To connect tactile perception with molecular structure, we systematically varied silane-derived monolayers deposited onto surfaces smoother than the limits of human perception. Through mechanical friction testing and cross-correlation analysis, we made predictions of which pairs of silanes might be distinguishable by humans. We predicted, and demonstrated, that humans can distinguish between two isosteric silanes which differ only by a single nitrogen-for-carbon substitution. The mechanism of tactile contrast originates from a difference in monolayer ordering, as quantified by the Hurst exponent, which was replicated in two alkylsilanes with a three-carbon difference in length. This approach may be generalizable to other materials and lead to new tactile sensations derived from materials chemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1sm00451dDOI Listing

Publication Analysis

Top Keywords

tactile interfaces
8
fine touch
8
tactile perception
8
tactile
6
predicting human
4
touch
4
human touch
4
touch sensitivity
4
sensitivity single
4
single atom
4

Similar Publications

In bioneuronal systems, the synergistic interaction between mechanosensitive piezo channels and neuronal synapses can convert and transmit pressure signals into complex temporal plastic pulses with excitatory and inhibitory features. However, existing artificial tactile neuromorphic systems struggle to replicate the elaborate temporal plasticity observed between excitatory and inhibitory features in biological systems, which is critical for the biomimetic processing and memorizing of tactile information. Here we demonstrate a mechano-gated iontronic piezomemristor with programmable temporal-tactile plasticity.

View Article and Find Full Text PDF

The next generation of stretchable electronics seeks to integrate superior mechanical properties with sustainability and sensing stability. Ionically conductive and liquid-free elastomers have gained recognition as promising candidates, addressing the challenges of evaporation and leakage in gel-based conductors. In this study, a sustainable polymeric deep eutectic system is synergistically integrated with amino-terminated hyperbranched polyamide-modified fibers and aluminum ions, forming a conductive supramolecular network with significant improvements in mechanical performance.

View Article and Find Full Text PDF

: Tactile gnosis derives from the interplay between the hand's tactile input and the memory systems of the brain. It is the prerequisite for complex hand functions. Impaired sensation leads to profound disability.

View Article and Find Full Text PDF

Recent Progress in Self-Healing Triboelectric Nanogenerators for Artificial Skins.

Biosensors (Basel)

January 2025

Henan Energy Conversion and Storage Materials Engineering Center, College of Science, Henan University of Engineering, Zhengzhou 451191, China.

Self-healing triboelectric nanogenerators (TENGs), which incorporate self-healing materials capable of recovering their structural and functional properties after damage, are transforming the field of artificial skin by effectively addressing challenges associated with mechanical damage and functional degradation. This review explores the latest advancements in self-healing TENGs, emphasizing material innovations, structural designs, and practical applications. Key materials include dynamic covalent polymers, supramolecular elastomers, and ion-conductive hydrogels, which provide rapid damage recovery, superior mechanical strength, and stable electrical performance.

View Article and Find Full Text PDF

Reliable and robust robotic handling of microplates via computer vision and touch feedback.

Front Robot AI

January 2025

CREATE Lab, Institute of Mechanical Engineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.

Laboratory automation requires reliable and precise handling of microplates, but existing robotic systems often struggle to achieve this, particularly when navigating around the dynamic and variable nature of laboratory environments. This work introduces a novel method integrating simultaneous localization and mapping (SLAM), computer vision, and tactile feedback for the precise and autonomous placement of microplates. Implemented on a bi-manual mobile robot, the method achieves fine-positioning accuracies of 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!