Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Ultracold atomic Fermi gases can be tuned to interact strongly, which produces a display of spectroscopic signatures above the superfluid transition reminiscent of the pseudogap in cuprates. However, the extent of the analogy can be questioned since many thermodynamic quantities in the low temperature spin-imbalanced normal state can be described successfully using Fermi liquid theory. Here we present spin susceptibility measurements across the interaction strength-temperature phase diagram using a novel radio frequency technique with ultracold ^{6}Li gases. For all significant interaction strengths and at all temperatures we find the spin susceptibility is reduced compared to the equivalent value for a noninteracting Fermi gas. At unitarity, we can use the local density approximation to extract the integrated spin susceptibility for the uniform gas as a function of temperature, which at high temperatures is generally less than theoretically predicted. At low temperatures, our data lie within the range of theoretical predictions, although we can also describe the entire curve using a very simple one-parameter mean field model with monotonically increasing spin susceptibility.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.126.153402 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!