Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The repeat-until-success strategy is a standard method to obtain success with a probability that grows exponentially with the number of iterations. However, since quantum systems are disturbed after a quantum measurement, how to perform repeat-until-success strategies in certain quantum algorithms is not straightforward. In this Letter, we propose a new structure for probabilistic higher-order transformation named success-or-draw, which allows a repeat-until-success implementation. For that we provide a universal construction of success-or-draw structure that works for any probabilistic higher-order transformation on unitary operations. We then present a semidefinite programming approach to obtain optimal success-or-draw protocols and analyze in detail the problem of inverting a general unitary operation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.126.150504 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!