Synthesis of Difluoroglycine Derivatives from Amines, Difluorocarbene, and CO : Computational Design, Scope, and Applications.

Chemistry

Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido, 0010021, Japan.

Published: July 2021

A three-component reaction (3CR) for the synthesis of difluoroglycine derivatives has been achieved by using amines, difluorocarbene (generated in situ), and the abundant, inexpensive, and nontoxic C source CO . Various tert-amines and pyridine, (iso)quinoline, imidazole, thiazole, and pyrazole derivatives were incorporated, and the corresponding products were isolated in solid form without purification by column chromatography on silica gel. Detailed reaction profiles of the 3CR were obtained from computational analysis using DFT calculations, and the results critically suggest that simple ammonia is not applicable to this reaction. In addition, as strongly supported by computational predictions, a new reagent that can generate difluorocarbene at 0 °C without any additives was discovered. Finally, radical substitution reactions of the obtained difluoroglycine derivatives under photoredox conditions, as well as a synthetic application as an N-heterocyclic carbene ligand are shown.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.202100812DOI Listing

Publication Analysis

Top Keywords

difluoroglycine derivatives
12
synthesis difluoroglycine
8
amines difluorocarbene
8
derivatives
4
derivatives amines
4
difluorocarbene computational
4
computational design
4
design scope
4
scope applications
4
applications three-component
4

Similar Publications

Synthesis of Difluoroglycine Derivatives from Amines, Difluorocarbene, and CO : Computational Design, Scope, and Applications.

Chemistry

July 2021

Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido, 0010021, Japan.

Invited for the cover of this issue are Satoshi Maeda, Tsuyoshi Mita, and co-workers at ICReDD (Hokkaido University). The image depicts an Artificial Force Induced Reaction (AFIR) conducted on a supercomputer, which predicts a new chemical transformation and its application. Read the full text of the article at 10.

View Article and Find Full Text PDF

The systematic exploration of synthetic pathways to afford a desired product through quantum chemical calculations remains a considerable challenge. In 2013, Maeda introduced 'quantum chemistry aided retrosynthetic analysis' (QCaRA), which uses quantum chemical calculations to search systematically for the decomposition paths of a target product and proposes a synthesis method. However, until now, no new reactions suggested by QCaRA have been reported to lead to experimental discoveries.

View Article and Find Full Text PDF

Synthesis of Difluoroglycine Derivatives from Amines, Difluorocarbene, and CO : Computational Design, Scope, and Applications.

Chemistry

July 2021

Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido, 0010021, Japan.

A three-component reaction (3CR) for the synthesis of difluoroglycine derivatives has been achieved by using amines, difluorocarbene (generated in situ), and the abundant, inexpensive, and nontoxic C source CO . Various tert-amines and pyridine, (iso)quinoline, imidazole, thiazole, and pyrazole derivatives were incorporated, and the corresponding products were isolated in solid form without purification by column chromatography on silica gel. Detailed reaction profiles of the 3CR were obtained from computational analysis using DFT calculations, and the results critically suggest that simple ammonia is not applicable to this reaction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!